On determining the coefficient of heat exchange in stratified medium
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 14 (2022) no. 1, pp. 13-26 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the article we consider the well-posedness in Sobolev spaces of the inverse problems of determining the heat exchange coefficient at the interface which is included in the transmission condition of the imperfect contact type. In a cylindrical spatial domain, a second-order parabolic equation is considered. The domain is divided into two sub-domains, on the common part of the boundary of which the transmission condition is set. The heat exchange coefficient included in the transmission condition is sought as end segment in series with time-dependent unknown Fourier coefficients. The equation is supplemented with general boundary conditions and initial conditions, as well as overdetermination conditions. The ovedetermination conditions are the values of a solution at some points lying in the spatial domain. Under natural smoothness conditions for the data and the location of the measurement points, the existence and uniqueness theorem local in time is demonstrated. The obtained solution to the problem is regular, i. e., all generalized derivatives included in the equation are summable to some power, and the equation holds almost everywhere. The method is constructive, and the approach allows to develop numerical methods for solving the problem. The proof is based on a priori estimates obtained and the fixed-point theorem.
Keywords: inverse problem, heat and mass transfer.
Mots-clés : transmission problem, heat transfer coefficient, parabolic equation
@article{VYURM_2022_14_1_a1,
     author = {V. A. Belonogov},
     title = {On determining the coefficient of heat exchange in stratified medium},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matematika, mehanika, fizika},
     pages = {13--26},
     year = {2022},
     volume = {14},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VYURM_2022_14_1_a1/}
}
TY  - JOUR
AU  - V. A. Belonogov
TI  - On determining the coefficient of heat exchange in stratified medium
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
PY  - 2022
SP  - 13
EP  - 26
VL  - 14
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VYURM_2022_14_1_a1/
LA  - ru
ID  - VYURM_2022_14_1_a1
ER  - 
%0 Journal Article
%A V. A. Belonogov
%T On determining the coefficient of heat exchange in stratified medium
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
%D 2022
%P 13-26
%V 14
%N 1
%U http://geodesic.mathdoc.fr/item/VYURM_2022_14_1_a1/
%G ru
%F VYURM_2022_14_1_a1
V. A. Belonogov. On determining the coefficient of heat exchange in stratified medium. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 14 (2022) no. 1, pp. 13-26. http://geodesic.mathdoc.fr/item/VYURM_2022_14_1_a1/

[1] H.D. Baehr, K. Stephan, Heat and Mass Transfer, Springer-Verlag, Berlin–Heidelberg, 2006, 688 pp.

[2] O.A.Ladyzhenskaya, N.N. Uraltseva, V.A. Solonnikov, Lineinye i kvazilineinye uravneniya parabolicheskogo tipa, Nauka, M., 1967, 736 pp.

[3] O.M. Alifanov, E.A. Artyukhin, A.V. Nenarokomov, Obratnye zadachi v issledovanii slozhnogo teploobmena, Yanus-K, M., 2009, 299 pp.

[4] V.N. Tkachenko, Matematicheskoe modelirovanie, identifikatsiya i upravlenie tekhnologicheskimi protsessami teplovoi obrabotki materialov, Naukova dumka, Kiev, 2008, 243 pp.

[5] C. Huang, T. Ju, “An inverse problem of simultaneously estimating contact conductance and heat transfer coefficient of exhaust gases between engine's exhaust valve and seat”, International journal for numerical methods in engineering, 38:5 (1995), 735–754

[6] T. Loulou, E.Scott, “An inverse heat conduction problem with heat flux measurements”, International Journal for Numerical Methods in Engineering, 67:11 (2006), 1587–1616

[7] L.A. Abreu, H.R.B. Orlande, C.P. Naveira-Cotta et al., “Identification of Contact Failures in Multi-Layered Composites”, Proceedings of the ASME 2011 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference (Washington, DC, USA. August 28–31, 2011), v. 2, 31st Computers and Information in Engineering Conference, Parts A and B, 479–487

[8] L.A.S. Abreu, M.J. Colaco, C.J.S. Alves et al., “A Comparison of two inverse problem techniques for the identification of contact failures in multi-layered composites”, 22nd International Congress of Mechanical Engineering (COBEM 2013) (November 3–7, 2013, Ribeirão Preto, SP, Brazil), 2013, 5422–5432

[9] E.A. Artyukhin, A.V. Nenarokomov, “Reconstruction of thermal contact resistance from the solution of the inverse heat conduction problem”, Journal of Engineering Physics, 46:4 (1984), 677–681

[10] L.B. Drenchev, J. Sobczak, “Inverse heat conduction problems and application to estimate of heat parameters in 2-D experiments”, Proc. Int. Conf. High Temperature Capillarity (Cracow, Poland, 29 June–2 July 1997), Foundry Research Institute, Krakow, 1998, 355–361

[11] L.Zhuo, D. Lesnic, S. Meng, “Reconstruction of the Heat Transfer Coefficient at the Interface of a Bi-Material”, Inverse Problems in Science and Engineering, 28:3 (2020), 374–401

[12] Yu.M. Matsevityi, A.O. Kostikov, N.A. Safonov, V.V. Ganchin, “K resheniyu nestatsionarnykh nelineinykh granichnykh obratnykh zadach teploprovodnosti”, Problemy mashinostroeniya, 20:4 (2017), 15–23

[13] Kh. Tribel, Teoriya interpolyatsii. Funktsionalnye prostranstva. Differentsialnye operatory, Mir, M., 1980, 664 pp.

[14] R. Denk, M. Hieber, J. Prüss, “Optimal L$^p$-L$^q$-Estimates for Parabolic Boundary Value Problems with Inhomogeneous Data”, Mathematische Zeitschrift, 257:1 (2007), 193–224

[15] V.A. Belonogov, S.G. Pyatkov, “On Solvability of Some Classes of Transmission Problems in a Cylindrical Space Domain”, Sibirskie elektronnye matematicheskie izvestiya, 18:1 (2021), 176–206

[16] M.A. Verzhbitskii, S.G. Pyatkov, “O nekotorykh obratnykh zadachakh ob opredelenii granichnykh rezhimov”, Matematicheskie zametki SVFU, 23:2 (2016), 3–18

[17] V.A. Belonogov, S.G. Pyatkov, “O razreshimosti zadach sopryazheniya s usloviyami tipa neidealnogo kontakta”, Izvestiya vuzov. Matematika, 2020, no. 7, 18–32

[18] V.P. Mikhailov, Differentsialnye uravneniya v chastnykh proizvodnykh, Nauka, M., 1976, 391 pp.

[19] H. Amann, “Compact Embeddings of Vector-Valued Sobolev and Besov Spaces”, Glasnik matematicki, 35:55 (2000), 161–177

[20] P. Grisvard, “Équations différentielles abstraites”, Annales scientifiques de l'École Normale Supérieure, Série 4, 2:3 (1969), 311–395