Stability of factorization factors of Wiener-Hopf factorization of matrix functions
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 14 (2022) no. 1, pp. 5-12 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider the Wiener-Hopf factorization of two matrix functions $A(t)$ and $B(t)$ that are quite close in the norm of the Wiener algebra. The aim of this work is to study the question when the factorization factors of $A(t)$, $B(t)$ will be close enough to each other. This problem is of considerable interest in connection with the development of methods for approximate factorization of matrix functions. There are two main obstacles in the study of this problem: the instability of the partial indices of matrix functions and the non-uniqueness of their factorization factors. The problem was previously studied by M.A. Shubin, who showed that the stability of factorization factors takes place only in the case when $A(t)$ and $B(t)$ have the same partial indices. Then there is a factorization $B(t)$ for which the factorization factors are sufficiently close to the factors of $A(t)$. Theorem M.A. Shubin is non-constructive since it is not known when the partial indices of two close matrix functions will be the same, and the method for choosing the required Wiener-Hopf factorization of the matrix function $B(t)$ is not indicated. To overcome these shortcomings, in the present paper we study the problem of normalization of the factorization in the stable case, describe all possible types of normalizations, and prove their stability under a small perturbation $A(t)$. Now it is possible to find a constructive way of choosing the factorization of the perturbed matrix function, which guarantees the stability of the factorization factors.
Keywords: Wiener-Hopf factorization, stable system of partial indices, stability of factorization factors, normalization of factorization.
@article{VYURM_2022_14_1_a0,
     author = {N. V. Adukova},
     title = {Stability of factorization factors of {Wiener-Hopf} factorization of matrix functions},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matematika, mehanika, fizika},
     pages = {5--12},
     year = {2022},
     volume = {14},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VYURM_2022_14_1_a0/}
}
TY  - JOUR
AU  - N. V. Adukova
TI  - Stability of factorization factors of Wiener-Hopf factorization of matrix functions
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
PY  - 2022
SP  - 5
EP  - 12
VL  - 14
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VYURM_2022_14_1_a0/
LA  - ru
ID  - VYURM_2022_14_1_a0
ER  - 
%0 Journal Article
%A N. V. Adukova
%T Stability of factorization factors of Wiener-Hopf factorization of matrix functions
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
%D 2022
%P 5-12
%V 14
%N 1
%U http://geodesic.mathdoc.fr/item/VYURM_2022_14_1_a0/
%G ru
%F VYURM_2022_14_1_a0
N. V. Adukova. Stability of factorization factors of Wiener-Hopf factorization of matrix functions. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 14 (2022) no. 1, pp. 5-12. http://geodesic.mathdoc.fr/item/VYURM_2022_14_1_a0/

[1] I.Ts. Gokhberg, I.A. Feldman, Uravneniya v svertkakh i proektsionnye metody ikh resheniya, Nauka, M., 1971, 352 pp.

[2] G.S. Litvinchuk, I.M.Spitkovsky, Factorization of measurable matrix functions, Birkhauser, Basel-Boston, 1987, 372 pp.

[3] K.F. Clancey, I. Gohberg, Factorization of matrix functions and singular integral operators. Operator Theory, Advances and Applications, 1981, 236 pp.

[4] N.V.Adukova, V.M. Adukov, “On effective criterion of stability of partial indices for matrix polynomials”, Proceedings of the Royal Society A, 476:2238 (2020), 20200012

[5] N.V. Adukova, V.L. Dilman, “Ustoichivost faktorizatsionnykh mnozhitelei kanonicheskoi faktorizatsii Vinera-Khopfa matrits-funktsii”, Vestnik Yuzhno-Uralskogo universiteta, seriya Matematika. Mekhanika. Fizika, 13:1 (2021), 5–13

[6] I.S. Chebotaru, “Svedenie sistem uravnenii Vinera-Khopfa s sistemam s nulevymi indeksami”, Izv. AN Mold. SSR, ser. fiz.-tekhn. n., 1967, no. 8, 54–66

[7] N.Adukova, V. Adukov, “On a normalization of the Wiener-Hopf factorization for matrix functions”, 13th International ISAAC Congress, August 2–6, 2021, Ghent, Belgium, 2021, 45

[8] V.V. Voevodin, Yu.A. Kuznetsov, Matritsy i vychisleniya, Nauka, M., 1984, 318 pp.