@article{VYURM_2021_13_4_a8,
author = {P. V. Razumovsky and M. B. Abrosimov},
title = {The minimal vertex extensions for colored complete graphs},
journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matematika, mehanika, fizika},
pages = {77--89},
year = {2021},
volume = {13},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VYURM_2021_13_4_a8/}
}
TY - JOUR AU - P. V. Razumovsky AU - M. B. Abrosimov TI - The minimal vertex extensions for colored complete graphs JO - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika PY - 2021 SP - 77 EP - 89 VL - 13 IS - 4 UR - http://geodesic.mathdoc.fr/item/VYURM_2021_13_4_a8/ LA - ru ID - VYURM_2021_13_4_a8 ER -
%0 Journal Article %A P. V. Razumovsky %A M. B. Abrosimov %T The minimal vertex extensions for colored complete graphs %J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika %D 2021 %P 77-89 %V 13 %N 4 %U http://geodesic.mathdoc.fr/item/VYURM_2021_13_4_a8/ %G ru %F VYURM_2021_13_4_a8
P. V. Razumovsky; M. B. Abrosimov. The minimal vertex extensions for colored complete graphs. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 13 (2021) no. 4, pp. 77-89. http://geodesic.mathdoc.fr/item/VYURM_2021_13_4_a8/
[1] A. Avižienis, “Fault-tolerance and fault-intolerance: Complementary approaches to reliable computing”, ACM SIGPLAN Notices, 10:6 (1975), 458–464 | DOI
[2] J.P. Hayes, “A graph model for fault-tolerant computing system”, IEEE Trans. Comput., C-25:9 (1976), 875–884 | DOI
[3] F. Harary, J.P. Hayes, “Edge fault tolerance in graphs”, Networks, 23:2 (1993), 135–142 | DOI | Zbl
[4] F. Harary, J.P. Hayes, “Node fault tolerance in graphs”, Networks, 27:1 (1996), 19–23 | 3.0.CO;2-H class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | Zbl
[5] M.B. Abrosimov, Grafovye modeli otkazoustoichivosti, Izd-vo Sarat. Un-ta, Saratov, 2012, 189 pp.
[6] P.V. Razumovskii, M. B. Abrosimov, “Postroenie tsvetnykh grafov bez proverki na izomorfizm”, Izvestiya Saratovskogo universiteta. Novaya seriya. Seriya: Matematika. Mekhanika. Informatika, 21:2 (2021), 267–277 | Zbl
[7] P.V. Razumovsky, “The search for minimal edge 1-extension of an undirected colored graph”, Izv. Sarat. un-ta. Nov. ser. Ser. Matematika. Mekhanika. Informatika, 21:3 (2021), 400–407
[8] P.V. Razumovskii, “O minimalnykh vershinnykh 1-rasshireniyakh dvukhtsvetnykh polnykh grafov”, Materialy Mezhdunarodnogo molodezhnogo nauchnogo foruma «LOMONOSOV-2021», MAKS Press, M., 2021 https://lomonosov-msu.ru/archive/Lomonosov_2021/data/22112/124513_uid563707_report.pdf
[9] A.M. Bogomolov, V.N. Salii, Algebraicheskie osnovy teorii diskretnykh sistem, Nauka, M., 1997, 367 pp.