Ab initio modeling of interactions of P, H, S, S with grain boundaries in $\alpha$-iron
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 13 (2021) no. 4, pp. 57-68 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The results of modeling from the first principles of interaction of non-metallic impurities of interstitial (H, C) and substitutional (P, S) with grain boundaries in $\alpha$-iron are presented. The modeling has been conducted within the framework of the density functional theory (DFT) by the full-potential linearized augmented plane waves (FP LAPW) method with consideration to the generalized gradient approximation (GGA'96) in the WIEN2k software package. Three grain boundaries of the slope $\Sigma3 (111)$, $\Sigma5 (210)$ and $\Sigma5 (310)$ are studied. The supercells of the tilt grain boundaries using the coincidence site lattice model is constructed. The values of the energy characteristics of various grain boundaries with impurities are influenced by a number of factors, namely, the volume of the Voronoi polyhedron per impurity, magnetic moments, and the symmetry of the surrounding matrix. The results show that symmetric grain boundaries $\Sigma3 (111)$ and $\Sigma5 (310)$ are embrittled by phosphorus, hydrogen, and sulfur, while carbon strengthens interatomic bonds at the grain boundary, which coincides with the data available in the work. In the case of an asymmetric grain boundary $\Sigma5 (210)$, phosphorus and hydrogen weaken bonds at the grain boundary, while sulfur strengthens them. This is primarily explained by the geometry of the surrounding matrix. The magnetic moments at the impurity atoms are very small and, in most cases, are antiparallel to the magnetic moments at the neighboring Fe atoms.
Keywords: ab initio modeling, hydrogen, phosphorus, grain boundary.
Mots-clés : BCC iron, sulfur, carbon
@article{VYURM_2021_13_4_a6,
     author = {A. V. Verkhovykh and A. A. Mirzoev and N. S. Dyuryagina},
     title = {Ab initio modeling of interactions of {P,} {H,} {S,} {S} with grain boundaries in $\alpha$-iron},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matematika, mehanika, fizika},
     pages = {57--68},
     year = {2021},
     volume = {13},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VYURM_2021_13_4_a6/}
}
TY  - JOUR
AU  - A. V. Verkhovykh
AU  - A. A. Mirzoev
AU  - N. S. Dyuryagina
TI  - Ab initio modeling of interactions of P, H, S, S with grain boundaries in $\alpha$-iron
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
PY  - 2021
SP  - 57
EP  - 68
VL  - 13
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VYURM_2021_13_4_a6/
LA  - en
ID  - VYURM_2021_13_4_a6
ER  - 
%0 Journal Article
%A A. V. Verkhovykh
%A A. A. Mirzoev
%A N. S. Dyuryagina
%T Ab initio modeling of interactions of P, H, S, S with grain boundaries in $\alpha$-iron
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
%D 2021
%P 57-68
%V 13
%N 4
%U http://geodesic.mathdoc.fr/item/VYURM_2021_13_4_a6/
%G en
%F VYURM_2021_13_4_a6
A. V. Verkhovykh; A. A. Mirzoev; N. S. Dyuryagina. Ab initio modeling of interactions of P, H, S, S with grain boundaries in $\alpha$-iron. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 13 (2021) no. 4, pp. 57-68. http://geodesic.mathdoc.fr/item/VYURM_2021_13_4_a6/

[1] P. Jolly, “Discussion of “The Elimination of Oxygen-Induced Intergranular Brittleness in Iron by Addition of Scavengers””, Metallurgical and Materials Transactions B, 2:1 (1971), 341–342

[2] P.V. Ramasubramanian, D.F. Stein, “An Investigation of Grain-Boundary Embrittlement in Fe-P, Fe-P-S, and Fe-Sb-S Alloys”, Metallurgical Transactions, 4:7 (1973), 1735–1742 | DOI

[3] C. Pichard, J. Rieu, C. Goux, “The Influence of Oxygen and Sulfur on the Intergranular Brittleness of Iron”, Metallurgical Transactions A, 7:12 (1976), 1811–1815 | DOI

[4] R.P. Messmer, C.L. Briant, “The Role of Chemical Bonding in Grain Boundary Embrittlemen”, Acta Metallurgica, 30 (1982), 457–467 | DOI

[5] R. Haydock, “The Mobility of Bonds at Metal Surfaces (Heterogeneous Catalysis)”, Journal of Physics C: Solid State Physics, 14 (1981), 3807 | DOI

[6] G. Duscher, M.F. Chisholm, U. Alber, M. Rühle, “Bismuth-Induced Embrittlement of Copper Grain Boundaries”, Nature materials, 3 (2004), 621 | DOI

[7] R. Schweinfest, A.T. Paxton, M.W. Finnis, “Bismuth Embrittlement of Copper is an Atomic Size Effect”, Nature, 432 (2004), 1008–1011 | DOI

[8] G.L. Krasko, G.B. Olson, “Effect of Boron, Carbon, Phosphorus and Sulphur on Intergranular Cohesion in Iron”, Solid State Communications, 76:3 (1990), 247–251 | DOI

[9] S. Tang, A.J. Freeman, G.B. Olson, “Phosphorus-Induced Relaxation in an Iron Grain Boundary: A cluster-model study”, Physical Review B, 47:5 (1993), 2441 | DOI

[10] S. Tang, A.J. Freeman, G.B. Olson, “Local-Density Studies of the Structure and Electronic Properties of B and S in an Fe Grain Boundary”, Physical Review B, 50:1 (1994), 1–4 | DOI

[11] R. Wu, A.J. Freeman, A.J. Olson, “First Principles Determination of the Effects of Phosphorus and Boron on Iron Grain Boundary Cohesion”, Science, 265:5170 (1994), 376–380 | DOI

[12] R. Wu, A.J. Freeman, G.B. Olson, “Nature of Phosphorus Embrittlement of the Fe 3[11$^-$0](111) Grain Boundary”, Physical Review B, 50 (1994), 75 | DOI

[13] R. Wu, A.J. Freeman, G.B. Olson, “Effects of Carbon on Fe-Grain-Boundary Cohesion: First-Principles Determination”, Physical Review B, 53:11 (1996), 7504 | DOI

[14] J.S. Braithwaite, P. Rez, “Grain Boundary Impurities in Iron.”, Acta Materialia, 53 (2005), 2715–2726 | DOI

[15] E. Wachowicz, A. Kiejna, “Effect of Impurities on Grain Boundary Cohesion in BCC Iron”, Computational Materials Science, 43 (2008), 736–743 | DOI

[16] E. Wachowicz, A. Kiejna, “Effect of Impurities on Structural, Cohesive and Magnetic Properties of Grain Boundaries in -Fe”, Modelling and Simulation in Materials Science and Engineering, 19:2 (2011), 025001 | DOI

[17] M. Yamaguchi, Y. Nishiyama, H. Kaburaki, “Decohesion of Iron Grain Boundaries by Sulfur or Phosphorous Segregation: First-Principles Calculations”, Physical Review B, 76:3 (2007), 035418 | DOI

[18] L. Zhong, R. Wu, A.J. Freeman, G.B. Olson, “Charge Transfer Mechanism of Hydrogen-Induced Intergranular Embrittlement of Iron”, Physical Review B, 62 (2000), 13938 | DOI

[19] Z.X. Tian, J.X. Yan, W. Hao, W. Xiao, “Effect of Alloying Additions on the Hydrogen-Induced Grain Boundary Embrittlement in Iron”, Journal of Physics: Condensed Matter, 23 (2011), 015501 | DOI

[20] R. Matsumoto, M. Riku, S. Taketomi, N. Miyazaki, “Hydrogen-Grain Boundary Interaction in Fe, Fe-C, and Fe-N systems”, Progress in Nuclear Science and Technology, 2 (2010), 9–15 | DOI

[21] H. Momida, Y. Asari, Y. Nakamura et al., “Hydrogen-Enhanced Vacancy Embrittlement of Grain Boundaries in Iron”, Physical Review B, 88:14 (2013), 144107 | DOI

[22] Y.A. Du, L. Ismer, J. Rogal et al., “First-principles study on the interaction of H interstitials with grain boundaries in $\alpha$- and $\gamma$-Fe”, Physical Review B, 84:14 (2011), 144121 | DOI

[23] S.B. Gesari, M.E. Pronsato, A. Juan, “The Electronic Structure and Bonding of H Pairs at $\Sigma = 5$ BCC Fe Grain Boundary”, Surface Science, 187:3-4 (2002), 207–217 | DOI

[24] A. M. Tahir, R. Janisch, A. Hartmaier, “Hydrogen embrittlement of a carbon segregated $\Sigma5(310)[001]$ symmetrical tilt grain boundary in $\alpha$-Fe”, Material Science and Engineering A, 612 (2014), 462467 | DOI

[25] S.B. Gesari, M.E. Pronsato, A. Juan, “Grain boundary segregation of hydrogen in bcc iron: electronic structure”, Surface Review and Letters, 9 (2002), 1437–1442 | DOI

[26] P. Blaha, Wien2k. User's Guide, 2014 http://www.wien2k.at/reg_user/textbooks/usersguide.pdf

[27] D.J. Singh, L. Nordstrom, Planewaves, Pseudopotentials and the LAPW Method, Springer, New York, 2006, 136 pp.

[28] J.P. Perdew, K. Burke, M. Ernzerhof, “Generalized Gradient Approximation Made Simple”, Physical review letters, 77:18 (1996), 3865–3868 | DOI

[29] A.P. Sutton, R.W. Balluffi, Interfaces in Crystalline Materials, Oxford University Press, New York, 1995, 819 pp.

[30] H.J. Monkhorst, J.D. Pack, “Special Points for Brillouin-Zone Integrations”, Physical Review B, 13:12 (1976), 5188 | DOI

[31] Dzh. Emsli, Elementy, Mir, M., 1993, 255 pp.

[32] J.R. Rice, J.-S. Wang, “Embrittlement of Interfaces by Solute Segregation”, Materials Science and Engineering A — structural Materials Properties Microstructure and Processing, 107 (1989), 23–40 | DOI

[33] D.A. Mirzaev, A.A. Mirzoev, K.Yu. Okishev, A.V. Verkhovykh, “Ab initio Modelling of the Interaction of H Interstitials with Grain Boundaries in BCC Fe”, Molecular Physics, 114:9 (2016), 1502–1512 | DOI

[34] N. Gao, C.-C. Fu, M. Samaras et al., “Multiscale Modelling of Bi-Crystal Grain Boundaries in BCC Iron”, Journal of Nuclear Materials, 385:2 (2008), 262–267 | DOI

[35] S.S. Kulkov, A.V. Bakulin, S.E. Kulkova, “Effect of Boron on the Hydrogen-Induced Grain Boundary Embrittlement in $\alpha$-Fe”, International Journal of Hydrogen Energy, 43:3 (2017), 1909–1925 | DOI

[36] E. Wachowicz, T. Ossowski, A. Kiejna, “Cohesive and Magnetic Properties of Grain Boundaries in BCC Fe with Cr Additions”, Physical Review B, 81:9 (2010), 094104 | DOI

[37] M. Yamaguchi, “First-Principles Study on the Grain Boundary Embrittlement of Metals by Solute Segregation: Part I. Iron (Fe)-Solute (B, C, P, and S) Systems”, Metallurgical and Materials Transactions A, 42 (2011), 319–329 | DOI

[38] L.H.V. Vlack, “Intergranular Energy of Iron and Some Iron Alloys”, Transactions. American Institute of Mining, Metallurgical and Petroleum Engineers, 191 (1951), 251–259

[39] T.A. Roth, “The Surface and Grain Boundary Energies of Iron, Cobalt and Nickel”, Materials Science and Engineering, 18:2 (1975), 183–192 | DOI

[40] P. Lejček, S. Hofmann, “Interstitial and Substitutional Solute Segregation at Individual Grain Boundaries of $\alpha$-Iron: Data Revisited”, Journal of Physics: Condensed Matter, 28 (2016), 064001 | DOI

[41] P. Lejček, J. Adamek, S. Hofmann, “Anisotropy of Grain Boundary Segregation In $\Sigma= 5$ Bicrystals of $\alpha$-Iron”, Surface science, 264 (1992), 449–454 | DOI

[42] N. Hatcher, G.K.H. Madsen, R. Drautz, “Parameterized Electronic Description of Carbon Cohesion in Iron Grain Boundaries”, Journal of Physics: Condensed Matter, 26:14 (2014), 145502 | DOI

[43] A.M. Tahir, R. Janisch, A. Hartmaier, “Hydrogen Embrittlement of a Carbon Segregated $\Sigma5(310)[001]$ Symmetrical Tilt Grain Boundary in $\alpha$-Fe”, Material Science and Engineering A, 612 (2014), 462–467 | DOI

[44] K. Abiko, S. Suzuki, H. Kimura, “Effect of Carbon on the Toughness and Fracture Mode of Fe-P Alloys”, Transactions of the Japan Institute of Metals, 23:2 (1982), 43–52 | DOI

[45] S. Suzuki, S. Tanii, K. Abiko, H. Kimura, “Site Competition Between Sulfur and Carbon at Grain Boundaries and Their Effects on the Grain Boundary Cohesion in Iron”, Metallurgical Transactions A, 18 (1987), 1109–1115 | DOI

[46] J. Wang, R. Janisch, G.K.H. Madsen, R. Drautz, “First-Principles Study of Carbon Segregation in BCC Iron Symmetrical Tilt Grain Boundaries”, Acta Materialia, 115 (2016), 259–268 | DOI

[47] K. Ono, M. Meshii, “Hydrogen Detrapping from Grain Boundaries and Dislocations in High Purity Iron”, Acta Metallurgica et Materialia, 40:6 (1992), 1357–1364 | DOI

[48] P. Lejček, Grain Boundary Segregation in Metals, Springer, Berlin–Heidelberg, 2010, 239 pp.

[49] M. Rajagopalan, M.A. Tschopp, K.N. Solanki, “Grain Boundary Segregation of Interstitial and Substitutional Impurity Atoms in Alpha-Iron”, Jom, 66 (2014), 129–138 | DOI

[50] X. He, S. Wu, L. Jia, “Grain Boundary Segregation of Substitutional Solutes/Impurities and Grain Boundary Decohesion in BCC Fe”, Energy Procedia, 127 (2017), 377–386 | DOI

[51] L. Malerba, G.J. Ackland, C.S. Becquart et al., “Ab initio Calculations and Interatomic Potentials for Iron and Iron Alloys: Achievements within the Perfect Project”, Journal of Nuclear Materials, 406:1 (2010), 7–18 | DOI