Mots-clés : BCC iron, sulfur, carbon
@article{VYURM_2021_13_4_a6,
author = {A. V. Verkhovykh and A. A. Mirzoev and N. S. Dyuryagina},
title = {Ab initio modeling of interactions of {P,} {H,} {S,} {S} with grain boundaries in $\alpha$-iron},
journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matematika, mehanika, fizika},
pages = {57--68},
year = {2021},
volume = {13},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/VYURM_2021_13_4_a6/}
}
TY - JOUR AU - A. V. Verkhovykh AU - A. A. Mirzoev AU - N. S. Dyuryagina TI - Ab initio modeling of interactions of P, H, S, S with grain boundaries in $\alpha$-iron JO - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika PY - 2021 SP - 57 EP - 68 VL - 13 IS - 4 UR - http://geodesic.mathdoc.fr/item/VYURM_2021_13_4_a6/ LA - en ID - VYURM_2021_13_4_a6 ER -
%0 Journal Article %A A. V. Verkhovykh %A A. A. Mirzoev %A N. S. Dyuryagina %T Ab initio modeling of interactions of P, H, S, S with grain boundaries in $\alpha$-iron %J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika %D 2021 %P 57-68 %V 13 %N 4 %U http://geodesic.mathdoc.fr/item/VYURM_2021_13_4_a6/ %G en %F VYURM_2021_13_4_a6
A. V. Verkhovykh; A. A. Mirzoev; N. S. Dyuryagina. Ab initio modeling of interactions of P, H, S, S with grain boundaries in $\alpha$-iron. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 13 (2021) no. 4, pp. 57-68. http://geodesic.mathdoc.fr/item/VYURM_2021_13_4_a6/
[1] P. Jolly, “Discussion of “The Elimination of Oxygen-Induced Intergranular Brittleness in Iron by Addition of Scavengers””, Metallurgical and Materials Transactions B, 2:1 (1971), 341–342
[2] P.V. Ramasubramanian, D.F. Stein, “An Investigation of Grain-Boundary Embrittlement in Fe-P, Fe-P-S, and Fe-Sb-S Alloys”, Metallurgical Transactions, 4:7 (1973), 1735–1742 | DOI
[3] C. Pichard, J. Rieu, C. Goux, “The Influence of Oxygen and Sulfur on the Intergranular Brittleness of Iron”, Metallurgical Transactions A, 7:12 (1976), 1811–1815 | DOI
[4] R.P. Messmer, C.L. Briant, “The Role of Chemical Bonding in Grain Boundary Embrittlemen”, Acta Metallurgica, 30 (1982), 457–467 | DOI
[5] R. Haydock, “The Mobility of Bonds at Metal Surfaces (Heterogeneous Catalysis)”, Journal of Physics C: Solid State Physics, 14 (1981), 3807 | DOI
[6] G. Duscher, M.F. Chisholm, U. Alber, M. Rühle, “Bismuth-Induced Embrittlement of Copper Grain Boundaries”, Nature materials, 3 (2004), 621 | DOI
[7] R. Schweinfest, A.T. Paxton, M.W. Finnis, “Bismuth Embrittlement of Copper is an Atomic Size Effect”, Nature, 432 (2004), 1008–1011 | DOI
[8] G.L. Krasko, G.B. Olson, “Effect of Boron, Carbon, Phosphorus and Sulphur on Intergranular Cohesion in Iron”, Solid State Communications, 76:3 (1990), 247–251 | DOI
[9] S. Tang, A.J. Freeman, G.B. Olson, “Phosphorus-Induced Relaxation in an Iron Grain Boundary: A cluster-model study”, Physical Review B, 47:5 (1993), 2441 | DOI
[10] S. Tang, A.J. Freeman, G.B. Olson, “Local-Density Studies of the Structure and Electronic Properties of B and S in an Fe Grain Boundary”, Physical Review B, 50:1 (1994), 1–4 | DOI
[11] R. Wu, A.J. Freeman, A.J. Olson, “First Principles Determination of the Effects of Phosphorus and Boron on Iron Grain Boundary Cohesion”, Science, 265:5170 (1994), 376–380 | DOI
[12] R. Wu, A.J. Freeman, G.B. Olson, “Nature of Phosphorus Embrittlement of the Fe 3[11$^-$0](111) Grain Boundary”, Physical Review B, 50 (1994), 75 | DOI
[13] R. Wu, A.J. Freeman, G.B. Olson, “Effects of Carbon on Fe-Grain-Boundary Cohesion: First-Principles Determination”, Physical Review B, 53:11 (1996), 7504 | DOI
[14] J.S. Braithwaite, P. Rez, “Grain Boundary Impurities in Iron.”, Acta Materialia, 53 (2005), 2715–2726 | DOI
[15] E. Wachowicz, A. Kiejna, “Effect of Impurities on Grain Boundary Cohesion in BCC Iron”, Computational Materials Science, 43 (2008), 736–743 | DOI
[16] E. Wachowicz, A. Kiejna, “Effect of Impurities on Structural, Cohesive and Magnetic Properties of Grain Boundaries in -Fe”, Modelling and Simulation in Materials Science and Engineering, 19:2 (2011), 025001 | DOI
[17] M. Yamaguchi, Y. Nishiyama, H. Kaburaki, “Decohesion of Iron Grain Boundaries by Sulfur or Phosphorous Segregation: First-Principles Calculations”, Physical Review B, 76:3 (2007), 035418 | DOI
[18] L. Zhong, R. Wu, A.J. Freeman, G.B. Olson, “Charge Transfer Mechanism of Hydrogen-Induced Intergranular Embrittlement of Iron”, Physical Review B, 62 (2000), 13938 | DOI
[19] Z.X. Tian, J.X. Yan, W. Hao, W. Xiao, “Effect of Alloying Additions on the Hydrogen-Induced Grain Boundary Embrittlement in Iron”, Journal of Physics: Condensed Matter, 23 (2011), 015501 | DOI
[20] R. Matsumoto, M. Riku, S. Taketomi, N. Miyazaki, “Hydrogen-Grain Boundary Interaction in Fe, Fe-C, and Fe-N systems”, Progress in Nuclear Science and Technology, 2 (2010), 9–15 | DOI
[21] H. Momida, Y. Asari, Y. Nakamura et al., “Hydrogen-Enhanced Vacancy Embrittlement of Grain Boundaries in Iron”, Physical Review B, 88:14 (2013), 144107 | DOI
[22] Y.A. Du, L. Ismer, J. Rogal et al., “First-principles study on the interaction of H interstitials with grain boundaries in $\alpha$- and $\gamma$-Fe”, Physical Review B, 84:14 (2011), 144121 | DOI
[23] S.B. Gesari, M.E. Pronsato, A. Juan, “The Electronic Structure and Bonding of H Pairs at $\Sigma = 5$ BCC Fe Grain Boundary”, Surface Science, 187:3-4 (2002), 207–217 | DOI
[24] A. M. Tahir, R. Janisch, A. Hartmaier, “Hydrogen embrittlement of a carbon segregated $\Sigma5(310)[001]$ symmetrical tilt grain boundary in $\alpha$-Fe”, Material Science and Engineering A, 612 (2014), 462467 | DOI
[25] S.B. Gesari, M.E. Pronsato, A. Juan, “Grain boundary segregation of hydrogen in bcc iron: electronic structure”, Surface Review and Letters, 9 (2002), 1437–1442 | DOI
[26] P. Blaha, Wien2k. User's Guide, 2014 http://www.wien2k.at/reg_user/textbooks/usersguide.pdf
[27] D.J. Singh, L. Nordstrom, Planewaves, Pseudopotentials and the LAPW Method, Springer, New York, 2006, 136 pp.
[28] J.P. Perdew, K. Burke, M. Ernzerhof, “Generalized Gradient Approximation Made Simple”, Physical review letters, 77:18 (1996), 3865–3868 | DOI
[29] A.P. Sutton, R.W. Balluffi, Interfaces in Crystalline Materials, Oxford University Press, New York, 1995, 819 pp.
[30] H.J. Monkhorst, J.D. Pack, “Special Points for Brillouin-Zone Integrations”, Physical Review B, 13:12 (1976), 5188 | DOI
[31] Dzh. Emsli, Elementy, Mir, M., 1993, 255 pp.
[32] J.R. Rice, J.-S. Wang, “Embrittlement of Interfaces by Solute Segregation”, Materials Science and Engineering A — structural Materials Properties Microstructure and Processing, 107 (1989), 23–40 | DOI
[33] D.A. Mirzaev, A.A. Mirzoev, K.Yu. Okishev, A.V. Verkhovykh, “Ab initio Modelling of the Interaction of H Interstitials with Grain Boundaries in BCC Fe”, Molecular Physics, 114:9 (2016), 1502–1512 | DOI
[34] N. Gao, C.-C. Fu, M. Samaras et al., “Multiscale Modelling of Bi-Crystal Grain Boundaries in BCC Iron”, Journal of Nuclear Materials, 385:2 (2008), 262–267 | DOI
[35] S.S. Kulkov, A.V. Bakulin, S.E. Kulkova, “Effect of Boron on the Hydrogen-Induced Grain Boundary Embrittlement in $\alpha$-Fe”, International Journal of Hydrogen Energy, 43:3 (2017), 1909–1925 | DOI
[36] E. Wachowicz, T. Ossowski, A. Kiejna, “Cohesive and Magnetic Properties of Grain Boundaries in BCC Fe with Cr Additions”, Physical Review B, 81:9 (2010), 094104 | DOI
[37] M. Yamaguchi, “First-Principles Study on the Grain Boundary Embrittlement of Metals by Solute Segregation: Part I. Iron (Fe)-Solute (B, C, P, and S) Systems”, Metallurgical and Materials Transactions A, 42 (2011), 319–329 | DOI
[38] L.H.V. Vlack, “Intergranular Energy of Iron and Some Iron Alloys”, Transactions. American Institute of Mining, Metallurgical and Petroleum Engineers, 191 (1951), 251–259
[39] T.A. Roth, “The Surface and Grain Boundary Energies of Iron, Cobalt and Nickel”, Materials Science and Engineering, 18:2 (1975), 183–192 | DOI
[40] P. Lejček, S. Hofmann, “Interstitial and Substitutional Solute Segregation at Individual Grain Boundaries of $\alpha$-Iron: Data Revisited”, Journal of Physics: Condensed Matter, 28 (2016), 064001 | DOI
[41] P. Lejček, J. Adamek, S. Hofmann, “Anisotropy of Grain Boundary Segregation In $\Sigma= 5$ Bicrystals of $\alpha$-Iron”, Surface science, 264 (1992), 449–454 | DOI
[42] N. Hatcher, G.K.H. Madsen, R. Drautz, “Parameterized Electronic Description of Carbon Cohesion in Iron Grain Boundaries”, Journal of Physics: Condensed Matter, 26:14 (2014), 145502 | DOI
[43] A.M. Tahir, R. Janisch, A. Hartmaier, “Hydrogen Embrittlement of a Carbon Segregated $\Sigma5(310)[001]$ Symmetrical Tilt Grain Boundary in $\alpha$-Fe”, Material Science and Engineering A, 612 (2014), 462–467 | DOI
[44] K. Abiko, S. Suzuki, H. Kimura, “Effect of Carbon on the Toughness and Fracture Mode of Fe-P Alloys”, Transactions of the Japan Institute of Metals, 23:2 (1982), 43–52 | DOI
[45] S. Suzuki, S. Tanii, K. Abiko, H. Kimura, “Site Competition Between Sulfur and Carbon at Grain Boundaries and Their Effects on the Grain Boundary Cohesion in Iron”, Metallurgical Transactions A, 18 (1987), 1109–1115 | DOI
[46] J. Wang, R. Janisch, G.K.H. Madsen, R. Drautz, “First-Principles Study of Carbon Segregation in BCC Iron Symmetrical Tilt Grain Boundaries”, Acta Materialia, 115 (2016), 259–268 | DOI
[47] K. Ono, M. Meshii, “Hydrogen Detrapping from Grain Boundaries and Dislocations in High Purity Iron”, Acta Metallurgica et Materialia, 40:6 (1992), 1357–1364 | DOI
[48] P. Lejček, Grain Boundary Segregation in Metals, Springer, Berlin–Heidelberg, 2010, 239 pp.
[49] M. Rajagopalan, M.A. Tschopp, K.N. Solanki, “Grain Boundary Segregation of Interstitial and Substitutional Impurity Atoms in Alpha-Iron”, Jom, 66 (2014), 129–138 | DOI
[50] X. He, S. Wu, L. Jia, “Grain Boundary Segregation of Substitutional Solutes/Impurities and Grain Boundary Decohesion in BCC Fe”, Energy Procedia, 127 (2017), 377–386 | DOI
[51] L. Malerba, G.J. Ackland, C.S. Becquart et al., “Ab initio Calculations and Interatomic Potentials for Iron and Iron Alloys: Achievements within the Perfect Project”, Journal of Nuclear Materials, 406:1 (2010), 7–18 | DOI