Algorithms and information processing in numerical research of the Barenblatt-Zheltov-Kochina stochastic model
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 13 (2021) no. 4, pp. 29-36 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The paper investigates a model of pressure dynamics of a liquid filtered in a fractured-porous medium with random external action. It is based on the Cauchy-Dirichlet problem for the Barenblatt-Zheltov-Kochina stochastic equation. An algorithm for numerical research and information processing is presented, which provides for obtaining both degenerate and non-degenerate equations. The article describes an algorithm for the numerical solution of the Cauchy-Dirichlet problem for the Barenblatt-Zheltov-Kochina stochastic equation, which is based on the Galerkin method. Numerical study of the stochastic model implies obtaining and processing the results of $n$ experiments at various values of a random variable, including those related to rare events. The main theoretical results that have made it possible to conduct this numerical study are the methods of the theory of degenerate groups of operators and the theory of Sobolev-type equations. Algorithms are represented by schemes that allow to build flowcharts of programs on their basis, for conducting computational experiments.
Keywords: Barenblatt-Zheltov-Kochina equation, numerical research, algorithm, Sobolev-type stochastic equation.
@article{VYURM_2021_13_4_a3,
     author = {E. A. Soldatova and A. V. Keller},
     title = {Algorithms and information processing in numerical research of the {Barenblatt-Zheltov-Kochina} stochastic model},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matematika, mehanika, fizika},
     pages = {29--36},
     year = {2021},
     volume = {13},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VYURM_2021_13_4_a3/}
}
TY  - JOUR
AU  - E. A. Soldatova
AU  - A. V. Keller
TI  - Algorithms and information processing in numerical research of the Barenblatt-Zheltov-Kochina stochastic model
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
PY  - 2021
SP  - 29
EP  - 36
VL  - 13
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VYURM_2021_13_4_a3/
LA  - ru
ID  - VYURM_2021_13_4_a3
ER  - 
%0 Journal Article
%A E. A. Soldatova
%A A. V. Keller
%T Algorithms and information processing in numerical research of the Barenblatt-Zheltov-Kochina stochastic model
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
%D 2021
%P 29-36
%V 13
%N 4
%U http://geodesic.mathdoc.fr/item/VYURM_2021_13_4_a3/
%G ru
%F VYURM_2021_13_4_a3
E. A. Soldatova; A. V. Keller. Algorithms and information processing in numerical research of the Barenblatt-Zheltov-Kochina stochastic model. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 13 (2021) no. 4, pp. 29-36. http://geodesic.mathdoc.fr/item/VYURM_2021_13_4_a3/

[1] G.I. Barenblatt, Yu.P. Zheltov, I.N. Kochina, “Ob osnovnykh predstavleniyakh teorii filtratsii v treschinovatykh sredakh”, Priklad. matematika i mekhanika, 24:5 (1960), 852–864 | Zbl

[2] G.A. Sviridyuk, V.V. Shemetova, “Uravneniya Barenblatta-Zheltova-Kochinoi na grafe”, Vestnik Magnitogorskogo gosudarstvennogo universiteta, 2003, no. 4, 129 | Zbl

[3] Kh.G. Umarov, “Yavnyi vid resheniya smeshannoi zadachi v anizotropnom poluprostranstve dlya uravneniya Barenblatta-Zheltova-Kochinoi”, Vladikavkazskii matematicheskii zhurnal, 15:1 (2013), 51–64 | Zbl

[4] G.A. Sviridyuk, “K obschei teorii polugrupp operatorov”, Uspekhi mat. nauk, 49:4(298) (1994), 47–74 | Zbl

[5] S.A. Zagrebina, “Mnogotochechnaya nachalno-konechnaya zadacha dlya stokhasticheskoi modeli Barenblatta-Zheltova-Kochinoi”, Vestnik Yuzhno-Uralskogo gosudarstvennogo universiteta. Seriya: Kompyuternye tekhnologii, upravlenie, radioelektronika, 13:4 (2013), 103–111

[6] O.G. Kitaeva, D.E. Shafranov, G.A. Sviridyuk, “Exponential Dichotomies in Barenblatt-Zheltov-Kochina Model in Spaces of Differential Forms with «Noise»”, Vestnik YuUrGU. Seriya «Matematicheskoe modelirovanie i programmirovanie», 12:2 (2019), 47–57 | Zbl

[7] S.I. Kadchenko, E.A. Soldatova, S.A. Zagrebina, “Numerical Research of the Barenblatt-Zheltov-Kochina Stochastic Model”, Vestnik YuUrGU. Seriya «Matematicheskoe modelirovanie i programmirovanie», 9:2 (2016), 117–123 | Zbl

[8] A. Favini, G.A. Sviridyuk, A.A. Zamyshlyaeva, “One Class of Sobolev Type Equations of Higher Order with Additive «White Noise»”, Communications on Pure and Applied Analysis, 15:1 (2016), 185–196 | Zbl

[9] A. Favini, G.A. Sviridyuk, N.A. Manakova, “Linear sobolev type equations with relatively p-sectorial operators in space of «noises»”, Abstract and Applied Analysis, 2015 (2015), 697410 | Zbl

[10] A. Favini, G.A. Sviridyuk, M. Sagadeeva, “Linear Sobolev Type Equations with Relatively p-Radial Operators in Space of «Noises»”, Mediterranean Journal of Mathematics, 13:6 (2016), 4607–4621 | DOI | Zbl

[11] A. Favini, S.A. Zagrebina, G.A. Sviridyuk, “Multipoint Initial-Final Value Problems for Dynamical Sobolev-Type Equations in the Space of Noises”, Electronic Journal of Differential Equations, 2018:128 (2018), 1–10

[12] I.V. Melnikova, U.A. Alekseeva, V.A. Bovkun, “Uravneniya, svyazannye so sluchainymi protsessami: polugruppovoi podkhod i preobrazovanie Fure”, Sovremennaya matematika. Fundamentalnye napravleniya, 67:2 (2021), 324–348

[13] Yu. E. Gliklikh, “Izuchenie uravnenii leontevskogo tipa s belym shumom metodami proizvodnykh v srednem sluchainykh protsessov”, Vestnik Yuzhno-Uralskogo gosudarstvennogo universiteta. Seriya «Matematicheskoe modelirovanie i programmirovanie», 27 (286):13 (2012), 24–34 | Zbl

[14] A.V. Keller, A.L. Shestakov, G.A. Sviridyuk, Y.V. Khudyakov, “The Numerical Algorithms for the Measurement of the Deterministic and Stochastic Signals”, Semigroups of operators — theory and applications, Springer Proceedings in Mathematics and Statistics, Springer, Cham, 2015, 183–195 | Zbl

[15] A.A. Zamyshlyaeva, A.V. Keller, M.B. Syropiatov, “Stochastic Model of Optimal Dynamic Measurements”, Bulletin of the South Ural State University. Series: Mathematical Modelling, Programming and Computer Software, 11:2 (2018), 147–153 | Zbl

[16] E.A. Soldatova, S.A. Zagrebina, “Lineinye uravneniya sobolevskogo tipa s otnositelno p-ogranichennymi operatorami i additivnym belym shumom”, Izvestiya Irkutskogo gosudarstvennogo universiteta. Seriya: Matematika, 6:1 (2013), 20–34 | Zbl