@article{VYURM_2021_13_4_a1,
author = {V. L. Dilman and D. A. Komissarova},
title = {Existence and uniqueness conditions for solutions of linear functional equations in the classes of {Lebesgue} functions antiderivatives on a simple smooth curve},
journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matematika, mehanika, fizika},
pages = {13--23},
year = {2021},
volume = {13},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VYURM_2021_13_4_a1/}
}
TY - JOUR AU - V. L. Dilman AU - D. A. Komissarova TI - Existence and uniqueness conditions for solutions of linear functional equations in the classes of Lebesgue functions antiderivatives on a simple smooth curve JO - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika PY - 2021 SP - 13 EP - 23 VL - 13 IS - 4 UR - http://geodesic.mathdoc.fr/item/VYURM_2021_13_4_a1/ LA - ru ID - VYURM_2021_13_4_a1 ER -
%0 Journal Article %A V. L. Dilman %A D. A. Komissarova %T Existence and uniqueness conditions for solutions of linear functional equations in the classes of Lebesgue functions antiderivatives on a simple smooth curve %J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika %D 2021 %P 13-23 %V 13 %N 4 %U http://geodesic.mathdoc.fr/item/VYURM_2021_13_4_a1/ %G ru %F VYURM_2021_13_4_a1
V. L. Dilman; D. A. Komissarova. Existence and uniqueness conditions for solutions of linear functional equations in the classes of Lebesgue functions antiderivatives on a simple smooth curve. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 13 (2021) no. 4, pp. 13-23. http://geodesic.mathdoc.fr/item/VYURM_2021_13_4_a1/
[1] T. Carleman, “Über die Abelsche Integralgleichung mit konstanten Integrationsgrenzen”, Mathematische Zeitschrift, 15:1 (1922), 111–120 | DOI | Zbl
[2] L.I. Chibrikova, N.B. Pleschinskii, “Ob integralnykh uravneniyakh s obobschennymi logarifmicheskimi i stepennymi yadrami”, Izv. vuzov. Matematika, 1976, no. 6, 91–104 | Zbl
[3] A.I. Muskhelishvili, Singulyarnye integralnye uravneniya, Nauka, M., 1968, 511 pp.
[4] F.D. Gakhov, Kraevye zadachi, Nauka, M., 1977, 640 pp.
[5] B.V. Khvedelidze, “Metod integralov tipa Koshi v razryvnykh granichnykh zadachakh teorii golomorfnykh funktsii odnoi kompleksnoi peremennoi”, Itogi nauki i tekhn. Ser. Sovrem. probl. mat., 7, 1975, 5–162 | Zbl
[6] V.L. Dilman, L.I. Chibrikova, “O resheniyakh integralnogo uravneniya s obobschennym logarifmicheskim yadrom v $L_p$, $p>1$”, Izv. vuzov. Matematika, 1986, no. 4, 26–36 | Zbl
[7] G.S. Litvinchuk, Solvability Theory of Boundary Value Problems and Singular Integral Equations with Shift, Springer Science +Business Media, 2012, 378 pp.
[8] V.G. Kravchenko, G.S. Litvinchuk, Introduction to the Theory of Singular Integral Operators with Shift, Springer Science+Business Media, 2014, 308 pp.
[9] Yu. I. Karlovich, V. G. Kravchenko, G. S. Litvinchuk, “Teoriya Netera singulyarnykh integralnykh operatorov so sdvigom”, Izv. vuzov. Matematika, 1983, no. 4, 3–27 | Zbl
[10] M. Kuczma, An Introduction to the Theory of Functional Equations and Inequalities, Cauchy's Equation and Jensen's Inequality, Państwowe Wydawnictwo Naukowe, Katowice, 1985