@article{VYURM_2021_13_4_a0,
author = {D. Karahan and K. R. Mamedov},
title = {On a $q$-boundary value problem with discontinuity conditions},
journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matematika, mehanika, fizika},
pages = {5--12},
year = {2021},
volume = {13},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/VYURM_2021_13_4_a0/}
}
TY - JOUR AU - D. Karahan AU - K. R. Mamedov TI - On a $q$-boundary value problem with discontinuity conditions JO - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika PY - 2021 SP - 5 EP - 12 VL - 13 IS - 4 UR - http://geodesic.mathdoc.fr/item/VYURM_2021_13_4_a0/ LA - en ID - VYURM_2021_13_4_a0 ER -
%0 Journal Article %A D. Karahan %A K. R. Mamedov %T On a $q$-boundary value problem with discontinuity conditions %J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika %D 2021 %P 5-12 %V 13 %N 4 %U http://geodesic.mathdoc.fr/item/VYURM_2021_13_4_a0/ %G en %F VYURM_2021_13_4_a0
D. Karahan; K. R. Mamedov. On a $q$-boundary value problem with discontinuity conditions. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 13 (2021) no. 4, pp. 5-12. http://geodesic.mathdoc.fr/item/VYURM_2021_13_4_a0/
[1] F.H. Jackson, “q-Difference Equations”, Am. J. Math., 32:4 (1910), 305–314 | DOI | Zbl
[2] M.H. Annaby, Z.S. Mansour, “q-Difference Equations”, q -Fractional Calculus and Equations, Lecture Notes in Mathematics, 2056, Springer, Berlin–Heidelberg, 2012 | DOI | Zbl
[3] M.H. Annaby, Z.S. Mansour, “Basic Sturm-Liouville problems”, J. Phys. A: Math. Gen., 38 (2005), 3775–3797 | DOI | Zbl
[4] K. Chung, W. Chung, S. Nam, H. Kang, “New q-Derivative and q-Logarithm”, Int. J. Theor. Phys., 33:10 (1994), 2019–2029 | DOI | Zbl
[5] R. Floreanini, J. LeTourneux, L. Vinet, “More on the q-Oscillator Algebra and q-Orthogonal Polynomials”, Journal of Physics A: Mathematical and General, 28:10 (1995), L287–L293 | DOI | Zbl
[6] M.H. Annaby, “q-Type Sampling Theorems”, Result. Math., 44:3 (2003), 214–225 | DOI | Zbl
[7] L.D. Abrue, “A q-Sampling Theorem Related to the q-Hankel Transform”, Proc. Am. Math. Soc., 133 (2005), 1197–1203 | DOI
[8] L.D. Abreu, “Sampling theory associated with q-difference equations of the Sturm-Liouville type”, J. Phys. A: Math. Gen., 38:48 (2005), 10311–10319 | DOI | Zbl
[9] D. Karahan, Kh.R. Mamedov, “Sampling Theory Associated with q-Sturm-Liouville Operator with Discontinuity Conditions”, Journal of Contemporary Applied Mathematics, 10:2 (2020), 40–48 | Zbl
[10] B.P. Allahverdiev, H. Tuna, “Qualitative Spectral Analysis of Singular q-Sturm-Liouville Operators”, Bulletin of the Malaysian Mathematical Sciences Society, 43:2 (2020), 1391–1402 | DOI | Zbl
[11] B.P. Allahverdiev, H. Tuna, “Eigenfunction Expansion in the Singular Case for q-Sturm-Liouville Operators”, Caspian Journal of Mathematical Sciences (CJMS), 8:2 (2019), 91–102 | Zbl
[12] V. Yurko, “Integral Transforms Connected with Discontinuous Boundary Value Problems”, Integral Transforms and Special Functions, 10:2 (2000), 141–164 | DOI | Zbl
[13] G. Gasper, M. Rahman, Basic Hypergeometric Series, Cambridge University Press, Cambridge–New York, 1990, 287 pp. | Zbl
[14] H.P. Kramer, “A Generalized Sampling Theorem”, Journal of Mathematics and Physics, 38:1-4 (1959), 68–72 | DOI | Zbl