On a $q$-boundary value problem with discontinuity conditions
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 13 (2021) no. 4, pp. 5-12 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper, we studied $q$-analogue of Sturm-Liouville boundary value problem on a finite interval having a discontinuity in an interior point. We proved that the $q$-Sturm-Liouville problem is self-adjoint in a modified Hilbert space. We investigated spectral properties of the eigenvalues and the eigenfunctions of $q$-Sturm-Liouville boundary value problem. We shown that eigenfunctions of $q$-Sturm-Liouville boundary value problem are in the form of a complete system. Finally, we proved a sampling theorem for integral transforms whose kernels are basic functions and the integral is of Jackson's type.
Keywords: $q$-Sturm-Liouville operator, self-adjoint operator, completeness of eigenfunctions, sampling theory.
@article{VYURM_2021_13_4_a0,
     author = {D. Karahan and K. R. Mamedov},
     title = {On a $q$-boundary value problem with discontinuity conditions},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matematika, mehanika, fizika},
     pages = {5--12},
     year = {2021},
     volume = {13},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VYURM_2021_13_4_a0/}
}
TY  - JOUR
AU  - D. Karahan
AU  - K. R. Mamedov
TI  - On a $q$-boundary value problem with discontinuity conditions
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
PY  - 2021
SP  - 5
EP  - 12
VL  - 13
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VYURM_2021_13_4_a0/
LA  - en
ID  - VYURM_2021_13_4_a0
ER  - 
%0 Journal Article
%A D. Karahan
%A K. R. Mamedov
%T On a $q$-boundary value problem with discontinuity conditions
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
%D 2021
%P 5-12
%V 13
%N 4
%U http://geodesic.mathdoc.fr/item/VYURM_2021_13_4_a0/
%G en
%F VYURM_2021_13_4_a0
D. Karahan; K. R. Mamedov. On a $q$-boundary value problem with discontinuity conditions. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 13 (2021) no. 4, pp. 5-12. http://geodesic.mathdoc.fr/item/VYURM_2021_13_4_a0/

[1] F.H. Jackson, “q-Difference Equations”, Am. J. Math., 32:4 (1910), 305–314 | DOI | Zbl

[2] M.H. Annaby, Z.S. Mansour, “q-Difference Equations”, q -Fractional Calculus and Equations, Lecture Notes in Mathematics, 2056, Springer, Berlin–Heidelberg, 2012 | DOI | Zbl

[3] M.H. Annaby, Z.S. Mansour, “Basic Sturm-Liouville problems”, J. Phys. A: Math. Gen., 38 (2005), 3775–3797 | DOI | Zbl

[4] K. Chung, W. Chung, S. Nam, H. Kang, “New q-Derivative and q-Logarithm”, Int. J. Theor. Phys., 33:10 (1994), 2019–2029 | DOI | Zbl

[5] R. Floreanini, J. LeTourneux, L. Vinet, “More on the q-Oscillator Algebra and q-Orthogonal Polynomials”, Journal of Physics A: Mathematical and General, 28:10 (1995), L287–L293 | DOI | Zbl

[6] M.H. Annaby, “q-Type Sampling Theorems”, Result. Math., 44:3 (2003), 214–225 | DOI | Zbl

[7] L.D. Abrue, “A q-Sampling Theorem Related to the q-Hankel Transform”, Proc. Am. Math. Soc., 133 (2005), 1197–1203 | DOI

[8] L.D. Abreu, “Sampling theory associated with q-difference equations of the Sturm-Liouville type”, J. Phys. A: Math. Gen., 38:48 (2005), 10311–10319 | DOI | Zbl

[9] D. Karahan, Kh.R. Mamedov, “Sampling Theory Associated with q-Sturm-Liouville Operator with Discontinuity Conditions”, Journal of Contemporary Applied Mathematics, 10:2 (2020), 40–48 | Zbl

[10] B.P. Allahverdiev, H. Tuna, “Qualitative Spectral Analysis of Singular q-Sturm-Liouville Operators”, Bulletin of the Malaysian Mathematical Sciences Society, 43:2 (2020), 1391–1402 | DOI | Zbl

[11] B.P. Allahverdiev, H. Tuna, “Eigenfunction Expansion in the Singular Case for q-Sturm-Liouville Operators”, Caspian Journal of Mathematical Sciences (CJMS), 8:2 (2019), 91–102 | Zbl

[12] V. Yurko, “Integral Transforms Connected with Discontinuous Boundary Value Problems”, Integral Transforms and Special Functions, 10:2 (2000), 141–164 | DOI | Zbl

[13] G. Gasper, M. Rahman, Basic Hypergeometric Series, Cambridge University Press, Cambridge–New York, 1990, 287 pp. | Zbl

[14] H.P. Kramer, “A Generalized Sampling Theorem”, Journal of Mathematics and Physics, 38:1-4 (1959), 68–72 | DOI | Zbl