A short proof of completion theorem for metric spaces
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 13 (2021) no. 2, pp. 61-64

Voir la notice de l'article provenant de la source Math-Net.Ru

The completion theorem for metric spaces is always proven using the space of Cauchy sequences. In this paper, we give a short and alternative proof of this theorem via Zorn's lemma. First, we give a way of adding one point to an incomplete space to get a chosen non-convergent Cauchy sequence convergent. Later, we show that every metric space has a completion by constructing a partial ordered set of metric spaces.
Keywords: Completion theorem, metric space, complete space, Zorn's lemma.
@article{VYURM_2021_13_2_a8,
     author = {U. Kaya},
     title = {A short proof of completion theorem for metric spaces},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matematika, mehanika, fizika},
     pages = {61--64},
     publisher = {mathdoc},
     volume = {13},
     number = {2},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VYURM_2021_13_2_a8/}
}
TY  - JOUR
AU  - U. Kaya
TI  - A short proof of completion theorem for metric spaces
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
PY  - 2021
SP  - 61
EP  - 64
VL  - 13
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VYURM_2021_13_2_a8/
LA  - en
ID  - VYURM_2021_13_2_a8
ER  - 
%0 Journal Article
%A U. Kaya
%T A short proof of completion theorem for metric spaces
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
%D 2021
%P 61-64
%V 13
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VYURM_2021_13_2_a8/
%G en
%F VYURM_2021_13_2_a8
U. Kaya. A short proof of completion theorem for metric spaces. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 13 (2021) no. 2, pp. 61-64. http://geodesic.mathdoc.fr/item/VYURM_2021_13_2_a8/