@article{VYURM_2021_13_2_a7,
author = {A. A. Ebel and A. E. Mayer},
title = {Evolution of plastic deformation and temperature at the reflection of a shock pulse from superficies with a nanorelief or with supplied nanoparticles},
journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matematika, mehanika, fizika},
pages = {53--60},
year = {2021},
volume = {13},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/VYURM_2021_13_2_a7/}
}
TY - JOUR AU - A. A. Ebel AU - A. E. Mayer TI - Evolution of plastic deformation and temperature at the reflection of a shock pulse from superficies with a nanorelief or with supplied nanoparticles JO - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika PY - 2021 SP - 53 EP - 60 VL - 13 IS - 2 UR - http://geodesic.mathdoc.fr/item/VYURM_2021_13_2_a7/ LA - en ID - VYURM_2021_13_2_a7 ER -
%0 Journal Article %A A. A. Ebel %A A. E. Mayer %T Evolution of plastic deformation and temperature at the reflection of a shock pulse from superficies with a nanorelief or with supplied nanoparticles %J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika %D 2021 %P 53-60 %V 13 %N 2 %U http://geodesic.mathdoc.fr/item/VYURM_2021_13_2_a7/ %G en %F VYURM_2021_13_2_a7
A. A. Ebel; A. E. Mayer. Evolution of plastic deformation and temperature at the reflection of a shock pulse from superficies with a nanorelief or with supplied nanoparticles. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 13 (2021) no. 2, pp. 53-60. http://geodesic.mathdoc.fr/item/VYURM_2021_13_2_a7/
[1] G.I. Kanel, V.E. Fortov, S.V. Razorenov, “Udarnye volny v fizike kondensirovannogo sostoyaniya”, UFN, 177:8 (2007), 809–830 | DOI
[2] E.B. Zaretsky, G.I. Kanel, “Yield Stress, Polymorphic Transformation, and Spall Fracture of Shock-Loaded Iron in Various Structural States and at Various Temperatures”, Journal of Applied Physics, 117:19 (2015), 195901 | DOI
[3] S.I. Ashitkov, P.S. Komarov, E.V. Struleva i dr., “Mekhanicheskie i opticheskie svoistva vanadiya pod deistviem udarnykh nagruzok pikosekundnogo diapazona”, Pisma v ZhETF, 101:4 (2015), 294–299
[4] S.F. Gnyusov, V.P. Rotshtein, A.E. Mayer et al., “Simulation and Experimental Investigation of the Spall Fracture of 304L Stainless Steel Irradiated by a Nanosecond Relativistic High-Current Electron Beam”, International Journal of Fracture, 199:1 (2016), 59–70 | DOI
[5] F. Yuan, L. Chen, P. Jiang, X. Wu, “Twin Boundary Spacing Effects on Shock Response and Spall Behaviors of Hierarchically Nanotwinned FCC Metals”, Journal of Applied Physics, 115:6 (2014), 063509 | DOI
[6] A. Kuksin, G. Norman, V. Stegailov et al., “Dynamic Fracture Kinetics, Influence of Temperature and Microstructure in the Atomistic Model of Aluminum”, International Journal of Fracture, 162:1 (2010), 127–136 | DOI | MR | Zbl
[7] V.V. Pogorelko, A.E. Mayer, “Influence of Copper Inclusions on the Strength of Aluminum Matrix at High-Rate Tension”, Materials Science and Engeneering: A, 642 (2015), 351–359 | DOI
[8] V.V. Pogorelko, A.E. Mayer, “Influence of Titanium and Magnesium Nanoinclusions on the Strength of Aluminum at High-Rate Tension: Molecular Dynamics Simulations”, Materials Science and Engineering: A, 662 (2016), 227–240 | DOI
[9] V.S. Krasnikov, A.E. Mayer, “Plasticity Driven Growth of Nanovoids and Strength of Aluminum at High Rate Tension: Molecular Dynamics Simulations and Continuum Modeling”, International Journal of Plasticity, 74 (2015), 75–91 | DOI
[10] A.Yu. Kuksin, V.V. Stegailov, A.V. Yanilkin, “Atomistic Simulation of Plasticity and Fracture of Nanocrystalline Copper under High-Rate Tension”, Physics Solid State, 50 (2008), 2069–2075 | DOI
[11] V.V. Stegailov, A.V. Yanilkin, “Structural Transformations in Single-Crystal Iron During Shock-Wave Compression and Tension: Molecular Dynamics Simulation”, Journal of Experimental and Theoretical Physics, 104:6 (2007), 928–935 | DOI
[12] L. Huang, W.Z. Han, Q. An et al., “Shock-induced Consolidation and Spallation of Cu Nanopowders”, Journal of Applied Physics, 111:1 (2012), 113508
[13] K. Mackenchery, R.R. Valisetty, R.R. Namburu et al., “Dislocation Evolution and Peak Spall Strengths in Single Crystal and Nanocrystalline Cu”, Journal of Applied Physics, 119:4 (2016), 044301 | DOI
[14] S.N. Luo, T.C. Germann, T.G. Desai et al., “Anisotropic Shock Response of Columnar Nanocrystalline Cu”, Journal of Applied Physics, 107:12 (2010), 123507 | DOI
[15] F. Yuan, L. Chen, P. Jiang, X. Wu, “Twin Boundary Spacing Effects on Shock Response and Spall Behaviors of Hierarchically Nanotwinned FCC Metals”, Journal of Applied Physics, 115:6 (2014), 063509 | DOI
[16] J.L. Shao, P. Wang, A. He et al., “Influence of Voids or He Bubbles on the Spall Damage in Single Crystal Al”, Modelling and Simulation in Materials Science Engineering, 22:2 (2014), 025012 | DOI
[17] Y. Chen, H. Hu, T. Tang et al., “Experimental Study of Ejecta from Shock Melted Lead”, Journal of Applied Physics, 111:5 (2012), 053509 | DOI
[18] J.L. Shao, P. Wang, A. He et al., “Atomistic simulations of shock-induced microjet from a grooved aluminium surface”, Journal of Applied Physics, 113:15 (2013), 153501 | DOI
[19] G. Ren, Y. Chen, T. Tang, Q. Li, “Ejecta Production from Shocked Pb Surface via Molecular Dynamics”, Journal of Applied Physics, 116:13 (2014), 133507 | DOI
[20] A.A. Ebel, A.E. Mayer, “Influence of Deposited Nanoparticles on the Spall Strength of Metals under the Action of Picosecond Pulses of Shock Compression”, Journal of Physics: Conference Series, 946 (2018), 012045 | DOI
[21] “Fast Parallel Algorithms for Short-Range Molecular Dynamics”, Journal of Computational Physics, 117:1 (1995), 1–19 | DOI
[22] Y. Mishin, D. Farkas, M.J. Mehl, D.A. Papaconstantopoulos, “Interatomic Potentials for Monoatomic Metals from Experimental Data and Ab Initio Calculations”, Physical Review B, 59:5 (1999), 3393–3407 | DOI
[23] A. Stukowski, “Visualization and Analysis of Atomistic Simulation Data with OVITO-the Open Visualization Tool”, Modelling and Simulation in Materials Science Engineering, 18 (2010), 015012 | DOI
[24] C.L. Kelchner, S.J. Plimpton, J.C. Hamilton, “Dislocation Nucleation and Defect Structure During Surface Indentation”, Physical Review B, 58:17 (1998), 11085 | DOI
[25] J.D. Honeycutt, H.C. Andersen, “Molecular Dynamics Study of Melting and Freezing of Small Lennard-Jones Clusters”, Journal of Physical Chemistry, 91:19 (1987), 4950–4963 | DOI
[26] A. Stukowski, “Structure Identification Methods for Atomistic Simulations of Crystalline Materials”, Modelling and Simulation in Materials Science Engineering, 20:4 (2012), 045021 | DOI
[27] A.E. Mayer, A.A. Ebel, “Influence of Free Surface Nanorelief on the Rear Spallation Threshold: Molecular Dynamics Investigation”, Journal of Applied Physics, 120:16 (2016), 165903 | DOI
[28] A.A. Ebel, A.E. Mayer, “Molecular Dynamic Investigations of the Shock Pulses Interaction with Nanostructured Free Surface of a Target”, Journal of Physics: Conference Series, 774 (2016), 012060 | DOI
[29] A.E. Mayer, A.A. Ebel, “Shock-Induced Compaction of Nanoparticle Layers into Nanostructured Coating”, Journal of Applied Physics, 122:16 (2017), 165901 | DOI
[30] A.K. Subramaniyan, C.T. Sun, “Continuum Interpretation of Virial Stress in Molecular Simulations”, International Journal of Solids and Structures, 45:14-15 (2008), 4340–4346 | DOI | Zbl