@article{VYURM_2021_13_2_a6,
author = {D. A. Tursunov and G. A. Omaralieva},
title = {Asymptotics of the solution to a two-band two-point boundary value problem},
journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matematika, mehanika, fizika},
pages = {46--52},
year = {2021},
volume = {13},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VYURM_2021_13_2_a6/}
}
TY - JOUR AU - D. A. Tursunov AU - G. A. Omaralieva TI - Asymptotics of the solution to a two-band two-point boundary value problem JO - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika PY - 2021 SP - 46 EP - 52 VL - 13 IS - 2 UR - http://geodesic.mathdoc.fr/item/VYURM_2021_13_2_a6/ LA - ru ID - VYURM_2021_13_2_a6 ER -
%0 Journal Article %A D. A. Tursunov %A G. A. Omaralieva %T Asymptotics of the solution to a two-band two-point boundary value problem %J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika %D 2021 %P 46-52 %V 13 %N 2 %U http://geodesic.mathdoc.fr/item/VYURM_2021_13_2_a6/ %G ru %F VYURM_2021_13_2_a6
D. A. Tursunov; G. A. Omaralieva. Asymptotics of the solution to a two-band two-point boundary value problem. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 13 (2021) no. 2, pp. 46-52. http://geodesic.mathdoc.fr/item/VYURM_2021_13_2_a6/
[1] H. Chen, G. Zou, “Discussion on the applicability of static asymptotic solutions in dynamic fracture”, Journal of Harbin Engineering University, 41:6 (2020), 824–831
[2] R. Yang, X.-G. Yang, “Asymptotic stability of 3D Navier-Stokes equations with damping”, Applied Mathematics Letters, 116 (2021), 107012 | DOI | MR | Zbl
[3] A.M. Ilin, A.R. Danilin, Asimptoticheskie metody v analize, Fizmatlit, M., 2009, 248 pp.
[4] V.A. Nikishkin, “Ob asimptotike resheniya zadachi Dirikhle dlya uravneniya chetvertogo poryadka v sloe”, Zhurnal vychislitelnoi matematiki i matematicheskoi fiziki, 54:8 (2014), 1249–1255 | MR | Zbl
[5] W. Lian, Z. Bai, “A class of fourth order nonlinear boundary value problem with singular perturbation”, Applied Mathematics Letters, 115 (2021), 106965 | DOI | MR | Zbl
[6] J. Benameur, S.B. Abdallah, “Asymptotic behavior of critical dissipative quasi-geostrophic equation in Fourier space”, Journal of Mathematical Analysis and Applications, 497:1 (2021), 124873 | DOI | MR | Zbl
[7] P. Rehak, “Asymptotics of perturbed discrete Euler equations in the critical case”, Journal of Mathematical Analysis and Applications, 496:2 (2021), 124825 | DOI | MR | Zbl
[8] L.-B. Liu, Y. Liang, X. Bao, H. Fang, “An efficient adaptive grid method for a system of singularly perturbed convection-diffusion problems with Robin boundary conditions”, Advances in Difference Equations, 2021:1 (2021), 6 (2021) | DOI | MR
[9] W. Lian, Z. Bai, “A class of fourth order nonlinear boundary value problem with singular perturbation”, Applied Mathematics Letters, 115 (2021), 106965 | DOI | MR | Zbl
[10] D.A. Tursunov, “Asimptoticheskoe reshenie lineinykh bisingulyarnykh zadach s dopolnitelnym pogranichnym sloem”, Izv. vuzov. Matem., 2018, no. 3, 70–78 | Zbl
[11] D.A. Tursunov, “The Asymptotic Solution of the Three-Band Bisingularly Problem”, Lobachevskii Journal of Mathematics, 38:3 (2017), 542–546 | DOI | MR | Zbl
[12] A.H. Nayfeh, Introduction to Perturbation Techniques, A Wiley-Interscience Publication, John Wiley Sons, New York etc., 519 pp. | MR | Zbl