Asymptotics of the solution to a two-band two-point boundary value problem
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 13 (2021) no. 2, pp. 46-52 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The article investigates the asymptotic behavior of the solution of a two-point boundary value problem on an interval for a linear inhomogeneous ordinary differential equation of the second order with a small parameter at the highest derivative. The essential features of the problem are the presence of a small parameter in front of the second-order derivative of the desired function, the existence of a two-dimensional boundary layer at the left end of the segment at $x = 0$, and the non-smoothness of the solution to the corresponding unperturbed boundary value problem. It is required to construct a uniform asymptotic expansion of the solution to a two-zone two-point boundary value problem on a unit interval, with any degree of accuracy, as the small parameter tends to zero. Due to the second and third features of the problem, it is not easy to construct an asymptotic solution expansion with respect to the small parameter using the known asymptotic methods. When solving the problem, the following methods are used: methods of integration of ordinary differential equations; the method of a small parameter; the classical method of boundary functions; and the generalized method of boundary functions and the maximum principle. The problem is solved in two stages: in the first stage, a formal expansion of the solution to the two-point boundary value problem is constructed, and in the second stage, the justification of this expansion is given, i.e. the remainder term of the expansion is estimated. In the first stage, a formal asymptotic solution is sought in the form of the sum of three solutions: a smooth outer solution on the entire segment; classical boundary layer solution in the vicinity of $x = 0$, which exponentially decreases outside the boundary layer; and an intermediate boundary layer solution at $x = 0$, which decreases in power mode outside the boundary layer. The constructed asymptotic expansion of the solution to the two-point boundary value problem is asymptotic in the sense of Erdei.
Keywords: asymptotic solution, small parameter, two-band problem, bisingular problem, two-point boundary value problem, ordinary differential equation with a small parameter.
@article{VYURM_2021_13_2_a6,
     author = {D. A. Tursunov and G. A. Omaralieva},
     title = {Asymptotics of the solution to a two-band two-point boundary value problem},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matematika, mehanika, fizika},
     pages = {46--52},
     year = {2021},
     volume = {13},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VYURM_2021_13_2_a6/}
}
TY  - JOUR
AU  - D. A. Tursunov
AU  - G. A. Omaralieva
TI  - Asymptotics of the solution to a two-band two-point boundary value problem
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
PY  - 2021
SP  - 46
EP  - 52
VL  - 13
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VYURM_2021_13_2_a6/
LA  - ru
ID  - VYURM_2021_13_2_a6
ER  - 
%0 Journal Article
%A D. A. Tursunov
%A G. A. Omaralieva
%T Asymptotics of the solution to a two-band two-point boundary value problem
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
%D 2021
%P 46-52
%V 13
%N 2
%U http://geodesic.mathdoc.fr/item/VYURM_2021_13_2_a6/
%G ru
%F VYURM_2021_13_2_a6
D. A. Tursunov; G. A. Omaralieva. Asymptotics of the solution to a two-band two-point boundary value problem. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 13 (2021) no. 2, pp. 46-52. http://geodesic.mathdoc.fr/item/VYURM_2021_13_2_a6/

[1] H. Chen, G. Zou, “Discussion on the applicability of static asymptotic solutions in dynamic fracture”, Journal of Harbin Engineering University, 41:6 (2020), 824–831

[2] R. Yang, X.-G. Yang, “Asymptotic stability of 3D Navier-Stokes equations with damping”, Applied Mathematics Letters, 116 (2021), 107012 | DOI | MR | Zbl

[3] A.M. Ilin, A.R. Danilin, Asimptoticheskie metody v analize, Fizmatlit, M., 2009, 248 pp.

[4] V.A. Nikishkin, “Ob asimptotike resheniya zadachi Dirikhle dlya uravneniya chetvertogo poryadka v sloe”, Zhurnal vychislitelnoi matematiki i matematicheskoi fiziki, 54:8 (2014), 1249–1255 | MR | Zbl

[5] W. Lian, Z. Bai, “A class of fourth order nonlinear boundary value problem with singular perturbation”, Applied Mathematics Letters, 115 (2021), 106965 | DOI | MR | Zbl

[6] J. Benameur, S.B. Abdallah, “Asymptotic behavior of critical dissipative quasi-geostrophic equation in Fourier space”, Journal of Mathematical Analysis and Applications, 497:1 (2021), 124873 | DOI | MR | Zbl

[7] P. Rehak, “Asymptotics of perturbed discrete Euler equations in the critical case”, Journal of Mathematical Analysis and Applications, 496:2 (2021), 124825 | DOI | MR | Zbl

[8] L.-B. Liu, Y. Liang, X. Bao, H. Fang, “An efficient adaptive grid method for a system of singularly perturbed convection-diffusion problems with Robin boundary conditions”, Advances in Difference Equations, 2021:1 (2021), 6 (2021) | DOI | MR

[9] W. Lian, Z. Bai, “A class of fourth order nonlinear boundary value problem with singular perturbation”, Applied Mathematics Letters, 115 (2021), 106965 | DOI | MR | Zbl

[10] D.A. Tursunov, “Asimptoticheskoe reshenie lineinykh bisingulyarnykh zadach s dopolnitelnym pogranichnym sloem”, Izv. vuzov. Matem., 2018, no. 3, 70–78 | Zbl

[11] D.A. Tursunov, “The Asymptotic Solution of the Three-Band Bisingularly Problem”, Lobachevskii Journal of Mathematics, 38:3 (2017), 542–546 | DOI | MR | Zbl

[12] A.H. Nayfeh, Introduction to Perturbation Techniques, A Wiley-Interscience Publication, John Wiley Sons, New York etc., 519 pp. | MR | Zbl