Mots-clés : polyharmonic equation
@article{VYURM_2021_13_2_a5,
author = {B. Kh. Turmetov and V. V. Karachik},
title = {On a {Dirichlet} problem for a nonlocal polyharmonic equation},
journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matematika, mehanika, fizika},
pages = {37--45},
year = {2021},
volume = {13},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VYURM_2021_13_2_a5/}
}
TY - JOUR AU - B. Kh. Turmetov AU - V. V. Karachik TI - On a Dirichlet problem for a nonlocal polyharmonic equation JO - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika PY - 2021 SP - 37 EP - 45 VL - 13 IS - 2 UR - http://geodesic.mathdoc.fr/item/VYURM_2021_13_2_a5/ LA - ru ID - VYURM_2021_13_2_a5 ER -
%0 Journal Article %A B. Kh. Turmetov %A V. V. Karachik %T On a Dirichlet problem for a nonlocal polyharmonic equation %J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika %D 2021 %P 37-45 %V 13 %N 2 %U http://geodesic.mathdoc.fr/item/VYURM_2021_13_2_a5/ %G ru %F VYURM_2021_13_2_a5
B. Kh. Turmetov; V. V. Karachik. On a Dirichlet problem for a nonlocal polyharmonic equation. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 13 (2021) no. 2, pp. 37-45. http://geodesic.mathdoc.fr/item/VYURM_2021_13_2_a5/
[1] A.M. Nakhushev, Uravneniya matematicheskoi biologii, Vyssh. shk, M., 1995, 301 pp.
[2] A.A. Andreev, “Ob analogakh klassicheskikh kraevykh zadach dlya odnogo differentsialnogo uravneniya vtorogo poryadka s otklonyayuschimsya argumentom”, Differents. uravneniya, 40:8 (2004), 1126–1128 | MR | Zbl
[3] A. Ashyralyev, A.M. Sarsenbi, “Well-posedness of a parabolic equation with involution”, Numerical Functional Analysis and Optimization, 38:10 (2017), 1295–1304 | DOI | MR | Zbl
[4] A. Ashyralyev, A.M. Sarsenbi, “A. Well-posedness of an elliptic equation with involution”, Electronic Journal of Differential Equations, 2015, no. 284, 1–8 | MR
[5] V.V. Karachik, A.M. Sarsenbi, B.Kh. Turmetov, “On the solvability of the main boundary value problems for a nonlocal Poisson equation”, Turkish Journal of Mathematics, 43:3 (2019), 1604–1625 | DOI | MR | Zbl
[6] M. Kirane, N. Al-Salti, “Inverse problems for a nonlocal wave equation with an involution perturbation”, Journal of Nonlinear Sciences and Applications, 9:3 (2016), 1243–1251 | DOI | MR | Zbl
[7] A.L. Skubachevskii, “Nonclassical boundary value problems. I”, Journal of Mathematical Sciences, 155:2 (2008), 199–334 | DOI | MR | Zbl
[8] A.L. Skubachevskii, “Nonclassical boundary-value problems. II”, Journal of Mathematical Sciences, 166:4 (2010), 377–561 | DOI | MR | Zbl
[9] D. Przeworska-Rolewicz, “Some boundary value problems with transformed argument”, Commentationes Mathematicae, 17:2 (1974), 451–457 | MR | Zbl
[10] V.V. Karachik, B.Kh. Turmetov, “On solvability of some Neumann-type boundary value problems for biharmonic equation”, Electronic Journal of Differential Equations, 218 (2017), 1–17 | MR
[11] M.A. Sadybekov, A.A. Dukenbayeva, “On boundary value problems of the Samarskii-Ionkin type for the Laplace operator in a ball”, Complex Variables and Elliptic Equations, 2020, 1–15 | DOI
[12] V.V. Karachik, B.Kh. Turmetov, “On solvability of some nonlocal boundary value problems for biharmonic equation”, Mathematica Slovaca, 70:2 (2020), 329–342 | DOI | MR | Zbl
[13] V.V. Karachik, B.Kh. Turmetov, “Solvability of one nonlocal Dirichlet problem for the Poisson equation”, Novi Sad Journal of Mathematics, 50:1 (2020), 67–88 | Zbl
[14] F. Gazzola, H.-Ch. Grunau, S. Guido, Polyharmonic Boundary Value Problems, Springer Verlag, Berlin, 2010, 423 pp. | MR | Zbl
[15] T.Sh. Kalmenov, B.D. Koshanov, M.Y. Nemchenko, “Green function representation for the Dirichlet problem of the polyharmonic equation in a sphere”, Complex variables and Elliptic equations, 53:2 (2008), 177–183 | DOI | MR | Zbl
[16] V.V. Karachik, “Polinomialnye resheniya zadachi Dirikhle dlya 3-garmonicheskogo uravneniya v share”, Zhurnal Sibirskogo federalnogo universiteta. Seriya: Matematika i fizika, 5:4 (2012), 527–546 | Zbl