On a Dirichlet problem for a nonlocal polyharmonic equation
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 13 (2021) no. 2, pp. 37-45
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The paper studies the solvability conditions for one class of boundary value problems for a nonlocal polyharmonic equation in the unit ball with Dirichlet conditions on the boundary generated by a certain orthogonal matrix. The existence and uniqueness of the solution to the posed Dirichlet problem are investigated and the Green's function is constructed. First, some auxiliary statements are established: the inversability of the Vandermonde matrix of the m$^\mathrm{th}$ roots of unity is investigated, then the eigenvectors and eigenvalues of the auxiliary matrix generated by the coefficients of the nonlocal operator of the problem are found, and then the inverse matrix to it is obtained. To prove the uniqueness of the solution to the problem, the commutativity of the boundary operators and the nonlocal operator of the problem is established, and it is shown that if a solution to the problem exists, then this solution is a polyharmonic function. Then the conditions for the uniqueness of the solution to the problem under consideration are obtained. Further, on the basis of the auxiliary statements obtained above, conditions for the existence of a solution to the nonlocal problem are found. The solution to this problem is written out through the solution of auxiliary Dirichlet problems for the polyharmonic equation in the unit ball. Finally, using the well-known Green's function of the Dirichlet problem for the polyharmonic equation in the unit ball, the Green's function of the original nonlocal problem is constructed.
Keywords: nonlocal operator, Dirichlet problem, solvability conditions, Green's function.
Mots-clés : polyharmonic equation
@article{VYURM_2021_13_2_a5,
     author = {B. Kh. Turmetov and V. V. Karachik},
     title = {On a {Dirichlet} problem for a nonlocal polyharmonic equation},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matematika, mehanika, fizika},
     pages = {37--45},
     year = {2021},
     volume = {13},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VYURM_2021_13_2_a5/}
}
TY  - JOUR
AU  - B. Kh. Turmetov
AU  - V. V. Karachik
TI  - On a Dirichlet problem for a nonlocal polyharmonic equation
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
PY  - 2021
SP  - 37
EP  - 45
VL  - 13
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VYURM_2021_13_2_a5/
LA  - ru
ID  - VYURM_2021_13_2_a5
ER  - 
%0 Journal Article
%A B. Kh. Turmetov
%A V. V. Karachik
%T On a Dirichlet problem for a nonlocal polyharmonic equation
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
%D 2021
%P 37-45
%V 13
%N 2
%U http://geodesic.mathdoc.fr/item/VYURM_2021_13_2_a5/
%G ru
%F VYURM_2021_13_2_a5
B. Kh. Turmetov; V. V. Karachik. On a Dirichlet problem for a nonlocal polyharmonic equation. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 13 (2021) no. 2, pp. 37-45. http://geodesic.mathdoc.fr/item/VYURM_2021_13_2_a5/

[1] A.M. Nakhushev, Uravneniya matematicheskoi biologii, Vyssh. shk, M., 1995, 301 pp.

[2] A.A. Andreev, “Ob analogakh klassicheskikh kraevykh zadach dlya odnogo differentsialnogo uravneniya vtorogo poryadka s otklonyayuschimsya argumentom”, Differents. uravneniya, 40:8 (2004), 1126–1128 | MR | Zbl

[3] A. Ashyralyev, A.M. Sarsenbi, “Well-posedness of a parabolic equation with involution”, Numerical Functional Analysis and Optimization, 38:10 (2017), 1295–1304 | DOI | MR | Zbl

[4] A. Ashyralyev, A.M. Sarsenbi, “A. Well-posedness of an elliptic equation with involution”, Electronic Journal of Differential Equations, 2015, no. 284, 1–8 | MR

[5] V.V. Karachik, A.M. Sarsenbi, B.Kh. Turmetov, “On the solvability of the main boundary value problems for a nonlocal Poisson equation”, Turkish Journal of Mathematics, 43:3 (2019), 1604–1625 | DOI | MR | Zbl

[6] M. Kirane, N. Al-Salti, “Inverse problems for a nonlocal wave equation with an involution perturbation”, Journal of Nonlinear Sciences and Applications, 9:3 (2016), 1243–1251 | DOI | MR | Zbl

[7] A.L. Skubachevskii, “Nonclassical boundary value problems. I”, Journal of Mathematical Sciences, 155:2 (2008), 199–334 | DOI | MR | Zbl

[8] A.L. Skubachevskii, “Nonclassical boundary-value problems. II”, Journal of Mathematical Sciences, 166:4 (2010), 377–561 | DOI | MR | Zbl

[9] D. Przeworska-Rolewicz, “Some boundary value problems with transformed argument”, Commentationes Mathematicae, 17:2 (1974), 451–457 | MR | Zbl

[10] V.V. Karachik, B.Kh. Turmetov, “On solvability of some Neumann-type boundary value problems for biharmonic equation”, Electronic Journal of Differential Equations, 218 (2017), 1–17 | MR

[11] M.A. Sadybekov, A.A. Dukenbayeva, “On boundary value problems of the Samarskii-Ionkin type for the Laplace operator in a ball”, Complex Variables and Elliptic Equations, 2020, 1–15 | DOI

[12] V.V. Karachik, B.Kh. Turmetov, “On solvability of some nonlocal boundary value problems for biharmonic equation”, Mathematica Slovaca, 70:2 (2020), 329–342 | DOI | MR | Zbl

[13] V.V. Karachik, B.Kh. Turmetov, “Solvability of one nonlocal Dirichlet problem for the Poisson equation”, Novi Sad Journal of Mathematics, 50:1 (2020), 67–88 | Zbl

[14] F. Gazzola, H.-Ch. Grunau, S. Guido, Polyharmonic Boundary Value Problems, Springer Verlag, Berlin, 2010, 423 pp. | MR | Zbl

[15] T.Sh. Kalmenov, B.D. Koshanov, M.Y. Nemchenko, “Green function representation for the Dirichlet problem of the polyharmonic equation in a sphere”, Complex variables and Elliptic equations, 53:2 (2008), 177–183 | DOI | MR | Zbl

[16] V.V. Karachik, “Polinomialnye resheniya zadachi Dirikhle dlya 3-garmonicheskogo uravneniya v share”, Zhurnal Sibirskogo federalnogo universiteta. Seriya: Matematika i fizika, 5:4 (2012), 527–546 | Zbl