@article{VYURM_2021_13_2_a4,
author = {M. A. Sagadeeva and L. M. Fatkulllina and O. V. Ufimtseva},
title = {Numerical solution to the initial-final problem for non-stationary {Leontief-type} systems},
journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matematika, mehanika, fizika},
pages = {30--36},
year = {2021},
volume = {13},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VYURM_2021_13_2_a4/}
}
TY - JOUR AU - M. A. Sagadeeva AU - L. M. Fatkulllina AU - O. V. Ufimtseva TI - Numerical solution to the initial-final problem for non-stationary Leontief-type systems JO - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika PY - 2021 SP - 30 EP - 36 VL - 13 IS - 2 UR - http://geodesic.mathdoc.fr/item/VYURM_2021_13_2_a4/ LA - ru ID - VYURM_2021_13_2_a4 ER -
%0 Journal Article %A M. A. Sagadeeva %A L. M. Fatkulllina %A O. V. Ufimtseva %T Numerical solution to the initial-final problem for non-stationary Leontief-type systems %J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika %D 2021 %P 30-36 %V 13 %N 2 %U http://geodesic.mathdoc.fr/item/VYURM_2021_13_2_a4/ %G ru %F VYURM_2021_13_2_a4
M. A. Sagadeeva; L. M. Fatkulllina; O. V. Ufimtseva. Numerical solution to the initial-final problem for non-stationary Leontief-type systems. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 13 (2021) no. 2, pp. 30-36. http://geodesic.mathdoc.fr/item/VYURM_2021_13_2_a4/
[1] C.R. McConnell, S.L. Brue, S.M. Flynn, Economics: Principles, Problems, and Policies, McGraw-Hill, New York, 2009, 786 pp.
[2] V.V. Leontev, Mezhotraslevaya ekonomika, Ekonomika, M., 1997, 477 pp.
[3] I.G. Pospelov, “Intensive Quantities in an Economy and Conjugate Variables”, Mathematical Notes, 94:1 (2013), 146–156 | DOI | MR | Zbl
[4] G.V. Demidenko, S.V. Uspenskii, Uravneniya i sistemy, ne razreshennye otnositelno starshei proizvodnoi, Izd-vo Nauchnaya kniga, Novosibirsk, 1998, 438 pp.
[5] G.A. Sviridyuk, V.E. Fedorov, Lineinye uravneniya sobolevskogo tipa, Chelyabinsk, 2003, 179 pp.
[6] A.B. Al'shin, M.O. Korpusov, A.G. Sveshnikov, Blow-up in Nonlinear Sobolev Type Equations, Walter de Gruyter Co., Berlin, 2011, 648 pp. | MR
[7] M.A. Sagadeeva, Issledovanie ustoichivosti reshenii lineinykh uravnenii sobolevskogo tipa, diss. ... kand. fiz.-mat. nauk, Chelyabinsk, 2006, 120 pp.
[8] A.V. Keller, M.A. Sagadeeva, “Degenerate Matrix Groups and Degenerate Matrix Flows in Solving the Optimal Control Problem for Dynamic Balance Models of the Economy”, Springer Proceedings in Mathematics and Statistics, 325 (2020), 263–277 | MR | Zbl
[9] S.A. Zagrebina, “Nachalno-konechnye zadachi dlya neklassicheskikh modelei matematicheskoi fiziki”, Vestnik YuUrGU. Seriya: Matematicheskoe modelirovanie i programmirovanie, 6:2 (2013), 5–24 | MR | Zbl
[10] S.A. Zagrebina, “A Multipoint Initial-Final Value Problem for a Linear Model of Plane-Parallel Thermal Convection in Viscoelastic Incompressible Fluid”, Vestnik YuUrGU. Seriya «Matematicheskoe modelirovanie i programmirovanie», 7:3 (2014), 5–22 | Zbl
[11] G.A. Sviridyuk, S.A. Zagrebina, A.S. Konkina, “Uravneniya Oskolkova na geometricheskikh grafakh kak matematicheskaya model dorozhnogo dvizheniya”, Vestnik YuUrGU. Seriya: Matematicheskoe modelirovanie i programmirovanie, 8:3 (2015), 148–154 | Zbl
[12] G.A. Sviridyuk, A.A. Zamyshlyaeva, S.A. Zagrebina, “Multipoint Initial-Final Problem for One Class of Sobolev Type Models of Higher Order with Additive «White Noise»”, Vestnik YuUrGU. Seriya «Matematicheskoe modelirovanie i programmirovanie», 11:3 (2018), 103–117 | Zbl
[13] S.A. Zagrebina, E.A. Soldatova, “Uravneniya Khoffa na grafe s mnogotochechnym nachalno-konechnym usloviem”, Journal of Computational and Engineering Mathematics, 6:2 (2019), 54–63 | DOI | MR
[14] S.A. Zagrebina, A.V. Keller, “Nekotorye obobscheniya zadachi Shouoltera-Sidorova dlya modelei sobolevskogo tipa”, Vestnik Yuzhno-Uralskogo gosudarstvennogo universiteta. Seriya: Matematicheskoe modelirovanie i programmirovanie, 8:2 (2015), 5–23 | Zbl
[15] G.A. Sviridyuk, S.A. Zagrebina, “Zadacha Shouoltera-Sidorova kak fenomen uravnenii sobolevskogo tipa”, Izvestiya Irkutskogo gosudarstvennogo universiteta. Seriya: Matematika, 3:1 (2010), 104–125 | Zbl
[16] A.V. Keller, “Sistemy leontevskogo tipa: klassy zadach s nachalnym usloviem Shouoltera-Sidorova i chislennye resheniya”, Izvestiya Irkutstkogo gosudarstvennogo universiteta. Seriya: Matematika, 3:2 (2010), 30–43 | Zbl
[17] I.V. Burlachko, G.A. Sviridyuk, “Algoritm resheniya zadachi Koshi dlya vyrozhdennykh lineinykh sistem obyknovennykh differentsialnykh uravnenii s postoyannymi koeffitsientami”, Zhurnal vychislitelnoi matematiki i matematicheskoi fiziki, 43:11 (2003), 1677–1683 | MR | Zbl
[18] G.A. Sviridyuk, S.V. Brychev, “Chislennoe reshenie sistem uravnenii leontevskogo tipa”, Izvestiya vuzov. Matematika, 2003, no. 8, 46–52 | Zbl
[19] F.R. Gantmakher, Teoriya matrits, Fizmatlit, M., 2010, 560 pp. | MR
[20] M.A. Sagadeeva, A.N. Shulepov, “Approksimatsii vyrozhdennykh $C_0$-polugrupp”, Vestnik YuUrGU. Seriya: Matematicheskoe modelirovanie i programmirovanie, 6:2 (2013), 133–137 | MR | Zbl
[21] A.V. Keller, Chislennoe issledovanie zadach optimalnogo upravleniya dlya modelei leontevskogo tipa, dis. ... d-ra. fiz.-mat. nauk, Chelyabinsk, 2011, 237 pp.