Numerical solution to the initial-final problem for non-stationary Leontief-type systems
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 13 (2021) no. 2, pp. 30-36 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The main purpose of the paper is to prove the convergence of a numerical solution to a non-stationary Leontief-type system with an initial-final condition. Non-stationary Leontief-type systems are used in the study of dynamic balance models of the economy. Nonstationarity of systems is described using a scalar function, which is multiplied by one of the matrices of the system. The distinctive feature of Leontief-type systems is the matrix singularity at the derivative with time, which is due to the fact that some types of resources of economic systems cannot be stored. In the article, the initial-final condition is used instead of the standard initial condition, which for economic systems can be interpreted as taking into account indicators not only at the initial moment of time, but also indicators that will be achieved at the final moment of time. Previously, the solution of such a problem was studied and described using contour integrals. However, this type of solution is not very convenient for large-dimensional systems, so this article proposes a description of the numerical solution without the use of contour integrals, and also examines the convergence of this numerical solution.
Keywords: relatively regular matrices, Cauchy problem, Showalter-Sidorov problem, approximations of resolving matrix flows, convergence of the numerical solution.
@article{VYURM_2021_13_2_a4,
     author = {M. A. Sagadeeva and L. M. Fatkulllina and O. V. Ufimtseva},
     title = {Numerical solution to the initial-final problem for non-stationary {Leontief-type} systems},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matematika, mehanika, fizika},
     pages = {30--36},
     year = {2021},
     volume = {13},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VYURM_2021_13_2_a4/}
}
TY  - JOUR
AU  - M. A. Sagadeeva
AU  - L. M. Fatkulllina
AU  - O. V. Ufimtseva
TI  - Numerical solution to the initial-final problem for non-stationary Leontief-type systems
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
PY  - 2021
SP  - 30
EP  - 36
VL  - 13
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VYURM_2021_13_2_a4/
LA  - ru
ID  - VYURM_2021_13_2_a4
ER  - 
%0 Journal Article
%A M. A. Sagadeeva
%A L. M. Fatkulllina
%A O. V. Ufimtseva
%T Numerical solution to the initial-final problem for non-stationary Leontief-type systems
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
%D 2021
%P 30-36
%V 13
%N 2
%U http://geodesic.mathdoc.fr/item/VYURM_2021_13_2_a4/
%G ru
%F VYURM_2021_13_2_a4
M. A. Sagadeeva; L. M. Fatkulllina; O. V. Ufimtseva. Numerical solution to the initial-final problem for non-stationary Leontief-type systems. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 13 (2021) no. 2, pp. 30-36. http://geodesic.mathdoc.fr/item/VYURM_2021_13_2_a4/

[1] C.R. McConnell, S.L. Brue, S.M. Flynn, Economics: Principles, Problems, and Policies, McGraw-Hill, New York, 2009, 786 pp.

[2] V.V. Leontev, Mezhotraslevaya ekonomika, Ekonomika, M., 1997, 477 pp.

[3] I.G. Pospelov, “Intensive Quantities in an Economy and Conjugate Variables”, Mathematical Notes, 94:1 (2013), 146–156 | DOI | MR | Zbl

[4] G.V. Demidenko, S.V. Uspenskii, Uravneniya i sistemy, ne razreshennye otnositelno starshei proizvodnoi, Izd-vo Nauchnaya kniga, Novosibirsk, 1998, 438 pp.

[5] G.A. Sviridyuk, V.E. Fedorov, Lineinye uravneniya sobolevskogo tipa, Chelyabinsk, 2003, 179 pp.

[6] A.B. Al'shin, M.O. Korpusov, A.G. Sveshnikov, Blow-up in Nonlinear Sobolev Type Equations, Walter de Gruyter Co., Berlin, 2011, 648 pp. | MR

[7] M.A. Sagadeeva, Issledovanie ustoichivosti reshenii lineinykh uravnenii sobolevskogo tipa, diss. ... kand. fiz.-mat. nauk, Chelyabinsk, 2006, 120 pp.

[8] A.V. Keller, M.A. Sagadeeva, “Degenerate Matrix Groups and Degenerate Matrix Flows in Solving the Optimal Control Problem for Dynamic Balance Models of the Economy”, Springer Proceedings in Mathematics and Statistics, 325 (2020), 263–277 | MR | Zbl

[9] S.A. Zagrebina, “Nachalno-konechnye zadachi dlya neklassicheskikh modelei matematicheskoi fiziki”, Vestnik YuUrGU. Seriya: Matematicheskoe modelirovanie i programmirovanie, 6:2 (2013), 5–24 | MR | Zbl

[10] S.A. Zagrebina, “A Multipoint Initial-Final Value Problem for a Linear Model of Plane-Parallel Thermal Convection in Viscoelastic Incompressible Fluid”, Vestnik YuUrGU. Seriya «Matematicheskoe modelirovanie i programmirovanie», 7:3 (2014), 5–22 | Zbl

[11] G.A. Sviridyuk, S.A. Zagrebina, A.S. Konkina, “Uravneniya Oskolkova na geometricheskikh grafakh kak matematicheskaya model dorozhnogo dvizheniya”, Vestnik YuUrGU. Seriya: Matematicheskoe modelirovanie i programmirovanie, 8:3 (2015), 148–154 | Zbl

[12] G.A. Sviridyuk, A.A. Zamyshlyaeva, S.A. Zagrebina, “Multipoint Initial-Final Problem for One Class of Sobolev Type Models of Higher Order with Additive «White Noise»”, Vestnik YuUrGU. Seriya «Matematicheskoe modelirovanie i programmirovanie», 11:3 (2018), 103–117 | Zbl

[13] S.A. Zagrebina, E.A. Soldatova, “Uravneniya Khoffa na grafe s mnogotochechnym nachalno-konechnym usloviem”, Journal of Computational and Engineering Mathematics, 6:2 (2019), 54–63 | DOI | MR

[14] S.A. Zagrebina, A.V. Keller, “Nekotorye obobscheniya zadachi Shouoltera-Sidorova dlya modelei sobolevskogo tipa”, Vestnik Yuzhno-Uralskogo gosudarstvennogo universiteta. Seriya: Matematicheskoe modelirovanie i programmirovanie, 8:2 (2015), 5–23 | Zbl

[15] G.A. Sviridyuk, S.A. Zagrebina, “Zadacha Shouoltera-Sidorova kak fenomen uravnenii sobolevskogo tipa”, Izvestiya Irkutskogo gosudarstvennogo universiteta. Seriya: Matematika, 3:1 (2010), 104–125 | Zbl

[16] A.V. Keller, “Sistemy leontevskogo tipa: klassy zadach s nachalnym usloviem Shouoltera-Sidorova i chislennye resheniya”, Izvestiya Irkutstkogo gosudarstvennogo universiteta. Seriya: Matematika, 3:2 (2010), 30–43 | Zbl

[17] I.V. Burlachko, G.A. Sviridyuk, “Algoritm resheniya zadachi Koshi dlya vyrozhdennykh lineinykh sistem obyknovennykh differentsialnykh uravnenii s postoyannymi koeffitsientami”, Zhurnal vychislitelnoi matematiki i matematicheskoi fiziki, 43:11 (2003), 1677–1683 | MR | Zbl

[18] G.A. Sviridyuk, S.V. Brychev, “Chislennoe reshenie sistem uravnenii leontevskogo tipa”, Izvestiya vuzov. Matematika, 2003, no. 8, 46–52 | Zbl

[19] F.R. Gantmakher, Teoriya matrits, Fizmatlit, M., 2010, 560 pp. | MR

[20] M.A. Sagadeeva, A.N. Shulepov, “Approksimatsii vyrozhdennykh $C_0$-polugrupp”, Vestnik YuUrGU. Seriya: Matematicheskoe modelirovanie i programmirovanie, 6:2 (2013), 133–137 | MR | Zbl

[21] A.V. Keller, Chislennoe issledovanie zadach optimalnogo upravleniya dlya modelei leontevskogo tipa, dis. ... d-ra. fiz.-mat. nauk, Chelyabinsk, 2011, 237 pp.