On one equation of internal waves
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 13 (2021) no. 2, pp. 11-16 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The Cauchy-Dirichlet problem is considered for the equation of internal waves. This equation has various applications in hydrodynamics, for example, in the study of waves in the ocean. The article provides an analytical study of one equation of internal waves. This equation characterizes propagation of waves in a homogeneous incompressible stratified fluid. The equation of internal waves is reduced to an abstract semilinear Sobolev type equation of the second order. The study of the equation is carried out within the framework of the theory of polynomially bounded operator pencils. In this work, we construct propagators for the equation of internal waves. Also, we present two model examples, where the domain D is represented in the form of a cylinder and a parallelepiped. The result of the work is an analytical solution to the considered cases for the equation of internal waves.
Keywords: internal wave equation, polynomially bounded pencils of operators, propagators.
Mots-clés : Sobolev-type equation
@article{VYURM_2021_13_2_a1,
     author = {K. Yu. Kotlovanov},
     title = {On one equation of internal waves},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matematika, mehanika, fizika},
     pages = {11--16},
     year = {2021},
     volume = {13},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VYURM_2021_13_2_a1/}
}
TY  - JOUR
AU  - K. Yu. Kotlovanov
TI  - On one equation of internal waves
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
PY  - 2021
SP  - 11
EP  - 16
VL  - 13
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VYURM_2021_13_2_a1/
LA  - en
ID  - VYURM_2021_13_2_a1
ER  - 
%0 Journal Article
%A K. Yu. Kotlovanov
%T On one equation of internal waves
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
%D 2021
%P 11-16
%V 13
%N 2
%U http://geodesic.mathdoc.fr/item/VYURM_2021_13_2_a1/
%G en
%F VYURM_2021_13_2_a1
K. Yu. Kotlovanov. On one equation of internal waves. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 13 (2021) no. 2, pp. 11-16. http://geodesic.mathdoc.fr/item/VYURM_2021_13_2_a1/

[1] Gabov S.A., Krutitskii P.A., “O malykh kolebaniyakh otrezka, pomeschennogo na granitsu razdela dvukh stratifitsirovannykh zhidkostei”, Zh. vychisl. matem. i matem. fiz., 29:4 (1989), 554–564 | MR | Zbl

[2] Yu.D. Pletner, “Fundamentalnoe reshenie uravneniya vnutrennikh voln i nekotorye nachalno-kraevye zadachi”, Zh. vychisl. matem. i matem. fiz., 31:4 (1991), 592–604 | MR

[3] L.V. Perova, A.G. Sveshnikov, “O rasprostranenii vozmuschenii, vozbuzhdaemykh v zhidkostyakh dvizhuschimisya istochnikami”, Zh. vychisl. matem. i matem. fiz., 50:12 (2010), 2223–2232 | MR | Zbl

[4] S.L. Sobolev, “Ob odnoi novoi zadache matematicheskoi fiziki”, Izv. AN SSSR. Ser matem., 18:1 (1954), 3–50 | MR | Zbl

[5] V.V. Vasilev, S.G. Krein, S.I. Piskarev, “Polugruppy operatorov, kosinus operator-funktsii i lineinye differentsialnye uravneniya”, Itogi nauki i tekhn. Ser. Mat. anal., 28, VINITI, 1990, 87–202 | MR

[6] G.A. Sviridyuk, V.E. Fedorov, Lineinye uravneniya sobolevskogo tipa, Chelyabinsk, 2003, 179 pp.

[7] G.V. Demidenko, S.V. Uspenskii, Uravneniya i sistemy, ne razreshennye otnositelno starshei proizvodnoi, Nauchnaya kniga, Novosibirsk, 1998, 436 pp.

[8] A.A. Zamyshlyaeva, “Fazovoe prostranstvo uravneniya sobolevskogo tipa vysokogo poryadka”, Izvestiya Irkutskogo gosudarstvennogo universiteta, 4:4 (2011), 45–57 | MR | Zbl

[9] A.A. Zamyshlyaeva, E.V. Bychkov, “The Cauchy Problem for the Sobolev Type Equation of Higher Order”, Vestnik YuUrGU. Seriya «Matematicheskoe modelirovanie i programmirovanie», 11:1 (2018), 5–14 | MR | Zbl

[10] G.A. Sviridyuk, A.A. Zamyshlyaeva, “Fazovye prostranstva odnogo klassa lineinykh uravnenii sobolevskogo tipa vysokogo poryadka”, Differents. uravn., 42:2 (2006), 252–260 | MR | Zbl