On one equation of internal waves
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 13 (2021) no. 2, pp. 11-16
Voir la notice de l'article provenant de la source Math-Net.Ru
The Cauchy-Dirichlet problem is considered for the equation of internal waves. This equation has various applications in hydrodynamics, for example, in the study of waves in the ocean. The article provides an analytical study of one equation of internal waves. This equation characterizes propagation of waves in a homogeneous incompressible stratified fluid. The equation of internal waves is reduced to an abstract semilinear Sobolev type equation of the second order. The study of the equation is carried out within the framework of the theory of polynomially bounded operator pencils. In this work, we construct propagators for the equation of internal waves. Also, we present two model examples, where the domain D is represented in the form of a cylinder and a parallelepiped. The result of the work is an analytical solution to the considered cases for the equation of internal waves.
Keywords:
internal wave equation, polynomially bounded pencils of operators, propagators.
Mots-clés : Sobolev-type equation
Mots-clés : Sobolev-type equation
@article{VYURM_2021_13_2_a1,
author = {K. Yu. Kotlovanov},
title = {On one equation of internal waves},
journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matematika, mehanika, fizika},
pages = {11--16},
publisher = {mathdoc},
volume = {13},
number = {2},
year = {2021},
language = {en},
url = {http://geodesic.mathdoc.fr/item/VYURM_2021_13_2_a1/}
}
TY - JOUR AU - K. Yu. Kotlovanov TI - On one equation of internal waves JO - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika PY - 2021 SP - 11 EP - 16 VL - 13 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VYURM_2021_13_2_a1/ LA - en ID - VYURM_2021_13_2_a1 ER -
K. Yu. Kotlovanov. On one equation of internal waves. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 13 (2021) no. 2, pp. 11-16. http://geodesic.mathdoc.fr/item/VYURM_2021_13_2_a1/