Invariant spaces of Oskolkov stochastic linear equations on the manifold
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 13 (2021) no. 2, pp. 5-10
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The Oskolkov equation is obtained from the Oskolkov system of equations describing the dynamics of a viscoelastic fluid, after stopping one of the spatial variables and introducing a stream function. The article considers a stochastic analogue of the linear Oskolkov equation for plane-parallel flows in spaces of differential forms defined on a smooth compact oriented manifold without boundary. In these Hilbert spaces, spaces of random K-variables and K-“noises” are constructed, and the question of the stability of solutions of the Oskolkov linear equation in the constructed spaces is solved in terms of stable and unstable invariant spaces and exponential dichotomies of solutions. Oskolkov stochastic linear equation is considered as a special case of a stochastic linear Sobolev-type equation, where the Nelson-Glicklich derivative is taken as the derivative, and a random process acts as the unknown. The existence of stable and unstable invariant spaces is shown for different values of the parameters entering into the Oskolkov equation.
Keywords: differential forms, Nelson-Glicklich derivative
Mots-clés : Sobolev-type equations, invariant spaces.
@article{VYURM_2021_13_2_a0,
     author = {O. G. Kitaeva},
     title = {Invariant spaces of {Oskolkov} stochastic linear equations on the manifold},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matematika, mehanika, fizika},
     pages = {5--10},
     year = {2021},
     volume = {13},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VYURM_2021_13_2_a0/}
}
TY  - JOUR
AU  - O. G. Kitaeva
TI  - Invariant spaces of Oskolkov stochastic linear equations on the manifold
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
PY  - 2021
SP  - 5
EP  - 10
VL  - 13
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VYURM_2021_13_2_a0/
LA  - en
ID  - VYURM_2021_13_2_a0
ER  - 
%0 Journal Article
%A O. G. Kitaeva
%T Invariant spaces of Oskolkov stochastic linear equations on the manifold
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
%D 2021
%P 5-10
%V 13
%N 2
%U http://geodesic.mathdoc.fr/item/VYURM_2021_13_2_a0/
%G en
%F VYURM_2021_13_2_a0
O. G. Kitaeva. Invariant spaces of Oskolkov stochastic linear equations on the manifold. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 13 (2021) no. 2, pp. 5-10. http://geodesic.mathdoc.fr/item/VYURM_2021_13_2_a0/

[1] A.P. Oskolkov, “Nelokalnye problemy dlya odnogo klassa nelineinykh operatornykh uravnenii, voznikayuschikh v teorii uravnenii tipa S.L. Soboleva”, Zapiski nauch. seminarov LOMI, 198, 1991, 31–48 | Zbl

[2] V.B. Amfilokhiev, Ya.I. Voitkunskii, N.P. Mazaeva, Ya.I. Khodorkovskii, “Techeniya polimernykh rastvorov pri nalichii konvektivnykh uskorenii”, Trudy Leninigradskogo korablestroitelnogo instituta, 96 (1975), 3–9

[3] G.A. Sviridyuk, “Kvazistatsionarnye traektorii polulineinykh dinamicheskikh uravnenii tipa Soboleva”, Izv. RAN, ser. matem., 57:3 (1993), 192–202

[4] G.A. Sviridyuk, M.M. Yakupov, “Fazovoe prostranstvo nachalno-kraevoi zadachi dlya sistemy Oskolkova”, Differents. uravneniya, 32:11 (1996), 1538–1543 | MR | Zbl

[5] G.A. Sviridyuk, T.G. Sukacheva, “Zadacha Koshi dlya odnogo klassa polulineinykh uravnenii tipa Soboleva”, Sib. matem. zhurn., 31:5 (1990), 109–119 | MR | Zbl

[6] G.A. Sviridyuk, D.E. Shafranov, “Zadacha Koshi dlya lineinogo uravneniya Oskolkova na gladkom mnogoobrazii”, Vestnik Chelyabinskogo gosudarstvennogo universiteta. Seriya 3. Matematika, Mekhanika, Informatika, 2003, no. 1(7), 146–153

[7] G.A. Sviridyuk, A.V. Keller, “Invariantnye prostranstva i dikhotomii reshenii odnogo klassa lineinykh uravnenii tipa Soboleva”, Izv. vuz. Matem., 1997, no. 5, 60–68 | Zbl

[8] O.G. Kitaeva, G.A. Sviridyuk, “Ustoichivoe i neustoichivoe invariantnye mnogoobraziya uravneniya Oskolkova”, Trudy mezhdunarodnogo seminara «Neklassicheskie uravneniya matematicheskoi fiziki», posvyaschennogo 60-letiyu so dnya rozhdeniya professora V.N. Vragova (Novosibirsk, 3-5 oktyabrya 2005 g.), Izd-vo In-ta matematiki, Novosibirsk, 2005, 160–166 | Zbl

[9] Yu.E. Gliklikh, Global and Stochastic Analysis with Applications to Mathematical Physics, Springer, London–Dordrecht–Heidelberg–N.Y., 2011, 436 pp. | MR | Zbl

[10] A. Favini, G.A. Sviridyuk, N.A. Manakova, “Linear Sobolev Type Equations with Relatively p-Sectorial Operators in Space of “noises””, Abstract and Applied Analysis, 2015 (2015), 697410 | MR | Zbl

[11] G.A. Sviridiuk, M.A. Sagadeeva, “Linear Sobolev Type Equations with Relatively p-Radial Operators in Space of “Noises””, Mediterranean Journal of Mathematics, 13:6 (2016), 4607–4621 | DOI | MR

[12] A. Favini, G.A. Sviridyuk, A.A. Zamyshlyaeva, “One Class of Sobolev Type Equations of Higher Order with Additive “White Noise””, Communications on Pure and Applied Analysis, 15:1 (2016), 185–196 | MR | Zbl

[13] A. Favini, S.A. Zagrebina, G.A. Sviridyuk, “Multipoint Initial-Final Value Problems for Dynamical Sobolev-type Equations in the space of noises”, Electronic Journal of Differential Equations, 2018 (2018), 128 | MR | Zbl

[14] D.E. Shafranov, O.G., Kitaeva, “The Barenblatt-Zheltov-Kochina Model with the Showalter-Sidorov Condition and Additive “White Noise” in Spaces of Differential Forms on Riemannian Manifolds without Boundary”, Global and Stochastic Analysis, 5:2 (2018), 145–159

[15] O.G. Kitaeva, D.E. Shafranov, G.A. Sviridiuk, “Exponential Dichotomies in the Barenblatt-Zheltov-Kochina Model in Spaces of Differential Forms with “Noise””, Vestnik YuUrGU. Seriya «Matematicheskoe modelirovanie i programmirovanie», 2:12 (2019), 47–57 | Zbl