Mots-clés : Sobolev-type equations, invariant spaces.
@article{VYURM_2021_13_2_a0,
author = {O. G. Kitaeva},
title = {Invariant spaces of {Oskolkov} stochastic linear equations on the manifold},
journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matematika, mehanika, fizika},
pages = {5--10},
year = {2021},
volume = {13},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/VYURM_2021_13_2_a0/}
}
TY - JOUR AU - O. G. Kitaeva TI - Invariant spaces of Oskolkov stochastic linear equations on the manifold JO - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika PY - 2021 SP - 5 EP - 10 VL - 13 IS - 2 UR - http://geodesic.mathdoc.fr/item/VYURM_2021_13_2_a0/ LA - en ID - VYURM_2021_13_2_a0 ER -
%0 Journal Article %A O. G. Kitaeva %T Invariant spaces of Oskolkov stochastic linear equations on the manifold %J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika %D 2021 %P 5-10 %V 13 %N 2 %U http://geodesic.mathdoc.fr/item/VYURM_2021_13_2_a0/ %G en %F VYURM_2021_13_2_a0
O. G. Kitaeva. Invariant spaces of Oskolkov stochastic linear equations on the manifold. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 13 (2021) no. 2, pp. 5-10. http://geodesic.mathdoc.fr/item/VYURM_2021_13_2_a0/
[1] A.P. Oskolkov, “Nelokalnye problemy dlya odnogo klassa nelineinykh operatornykh uravnenii, voznikayuschikh v teorii uravnenii tipa S.L. Soboleva”, Zapiski nauch. seminarov LOMI, 198, 1991, 31–48 | Zbl
[2] V.B. Amfilokhiev, Ya.I. Voitkunskii, N.P. Mazaeva, Ya.I. Khodorkovskii, “Techeniya polimernykh rastvorov pri nalichii konvektivnykh uskorenii”, Trudy Leninigradskogo korablestroitelnogo instituta, 96 (1975), 3–9
[3] G.A. Sviridyuk, “Kvazistatsionarnye traektorii polulineinykh dinamicheskikh uravnenii tipa Soboleva”, Izv. RAN, ser. matem., 57:3 (1993), 192–202
[4] G.A. Sviridyuk, M.M. Yakupov, “Fazovoe prostranstvo nachalno-kraevoi zadachi dlya sistemy Oskolkova”, Differents. uravneniya, 32:11 (1996), 1538–1543 | MR | Zbl
[5] G.A. Sviridyuk, T.G. Sukacheva, “Zadacha Koshi dlya odnogo klassa polulineinykh uravnenii tipa Soboleva”, Sib. matem. zhurn., 31:5 (1990), 109–119 | MR | Zbl
[6] G.A. Sviridyuk, D.E. Shafranov, “Zadacha Koshi dlya lineinogo uravneniya Oskolkova na gladkom mnogoobrazii”, Vestnik Chelyabinskogo gosudarstvennogo universiteta. Seriya 3. Matematika, Mekhanika, Informatika, 2003, no. 1(7), 146–153
[7] G.A. Sviridyuk, A.V. Keller, “Invariantnye prostranstva i dikhotomii reshenii odnogo klassa lineinykh uravnenii tipa Soboleva”, Izv. vuz. Matem., 1997, no. 5, 60–68 | Zbl
[8] O.G. Kitaeva, G.A. Sviridyuk, “Ustoichivoe i neustoichivoe invariantnye mnogoobraziya uravneniya Oskolkova”, Trudy mezhdunarodnogo seminara «Neklassicheskie uravneniya matematicheskoi fiziki», posvyaschennogo 60-letiyu so dnya rozhdeniya professora V.N. Vragova (Novosibirsk, 3-5 oktyabrya 2005 g.), Izd-vo In-ta matematiki, Novosibirsk, 2005, 160–166 | Zbl
[9] Yu.E. Gliklikh, Global and Stochastic Analysis with Applications to Mathematical Physics, Springer, London–Dordrecht–Heidelberg–N.Y., 2011, 436 pp. | MR | Zbl
[10] A. Favini, G.A. Sviridyuk, N.A. Manakova, “Linear Sobolev Type Equations with Relatively p-Sectorial Operators in Space of “noises””, Abstract and Applied Analysis, 2015 (2015), 697410 | MR | Zbl
[11] G.A. Sviridiuk, M.A. Sagadeeva, “Linear Sobolev Type Equations with Relatively p-Radial Operators in Space of “Noises””, Mediterranean Journal of Mathematics, 13:6 (2016), 4607–4621 | DOI | MR
[12] A. Favini, G.A. Sviridyuk, A.A. Zamyshlyaeva, “One Class of Sobolev Type Equations of Higher Order with Additive “White Noise””, Communications on Pure and Applied Analysis, 15:1 (2016), 185–196 | MR | Zbl
[13] A. Favini, S.A. Zagrebina, G.A. Sviridyuk, “Multipoint Initial-Final Value Problems for Dynamical Sobolev-type Equations in the space of noises”, Electronic Journal of Differential Equations, 2018 (2018), 128 | MR | Zbl
[14] D.E. Shafranov, O.G., Kitaeva, “The Barenblatt-Zheltov-Kochina Model with the Showalter-Sidorov Condition and Additive “White Noise” in Spaces of Differential Forms on Riemannian Manifolds without Boundary”, Global and Stochastic Analysis, 5:2 (2018), 145–159
[15] O.G. Kitaeva, D.E. Shafranov, G.A. Sviridiuk, “Exponential Dichotomies in the Barenblatt-Zheltov-Kochina Model in Spaces of Differential Forms with “Noise””, Vestnik YuUrGU. Seriya «Matematicheskoe modelirovanie i programmirovanie», 2:12 (2019), 47–57 | Zbl