Structure and electronic properties of 3-12 fluorographene crystals
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 13 (2021) no. 1, pp. 41-51 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The three-dimensional structure of crystals formed from 3-12 fluorinated graphene layers packed in stacks was found using the atom-atom potential method. Calculations of the electronic properties of CF-L$_{3-12}$ crystals were conducted using the method of density functional theory in the generalized gradient approximation. As a result of the calculations, it was established that the distance between the layers in crystals corresponding to the minimum energy of interlayer bonds is 5,7578 Å, and the absolute value of the shift vector of the adjacent layers is 1,4656 Å. The electronic structure of three-dimensional crystals differs from the electronic structure of 3-12 isolated fluorographene layers. The obtained value of the band gap in bulk crystals is 3,03 eV, which is about 12 % less than in a separated CF-L$_{3-12}$ layer (3,43 eV). The calculated value of the specific sublimation energy of 3-12 fluorographene crystal is 13,83 eV / (CF), which is 0,06 eV higher than the sublimation energy of the isolated fluorographene layer.
Mots-clés : graphene
Keywords: fluorinated graphene, crystal structure, band structure, computer modeling.
@article{VYURM_2021_13_1_a4,
     author = {M. E. Belenkov and V. M. Chernov and A. V. Butakov and E. A. Belenkov},
     title = {Structure and electronic properties of 3-12 fluorographene crystals},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matematika, mehanika, fizika},
     pages = {41--51},
     year = {2021},
     volume = {13},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VYURM_2021_13_1_a4/}
}
TY  - JOUR
AU  - M. E. Belenkov
AU  - V. M. Chernov
AU  - A. V. Butakov
AU  - E. A. Belenkov
TI  - Structure and electronic properties of 3-12 fluorographene crystals
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
PY  - 2021
SP  - 41
EP  - 51
VL  - 13
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VYURM_2021_13_1_a4/
LA  - ru
ID  - VYURM_2021_13_1_a4
ER  - 
%0 Journal Article
%A M. E. Belenkov
%A V. M. Chernov
%A A. V. Butakov
%A E. A. Belenkov
%T Structure and electronic properties of 3-12 fluorographene crystals
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
%D 2021
%P 41-51
%V 13
%N 1
%U http://geodesic.mathdoc.fr/item/VYURM_2021_13_1_a4/
%G ru
%F VYURM_2021_13_1_a4
M. E. Belenkov; V. M. Chernov; A. V. Butakov; E. A. Belenkov. Structure and electronic properties of 3-12 fluorographene crystals. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 13 (2021) no. 1, pp. 41-51. http://geodesic.mathdoc.fr/item/VYURM_2021_13_1_a4/

[1] R. Roldan, L. Chirolli, E. Prada, et al., “Theory of 2D crystals: Graphene and Beyond”, Chemical Society Reviews, 46 (2017), 4387–4399 | DOI

[2] J. Kang, W. Cao, X. Xie et al., “Graphene and beyond-Graphene 2D Crystals for Next-Generation Green Electronics”, Micro- and Nanotechnology Sensors, Systems, and Applications VI, Proc. SPIE, 9083, 2014, 908305 | DOI

[3] G. Omar, M.A. Salim, B.R. Mizah et al., “Electronic Applications of Functionalized Graphene Nanocomposites”, Functionalized Graphene Nanocomposites and their Derivatives. Synthesis, Processing and Applications Micro and Nano Technologies, Chapter 12, Elsevier, Amsterdam, 2019, 245–263

[4] S. Kawai, S. Saito, S. Osumi et al., “Atomically Controlled Substitutional Boron-Doping of Graphene Nanoribbons”, Nature Communications, 6:1 (2015), 8098 | DOI

[5] G. Lu, K. Yu, Z. Wena, J. Chen, “Semiconducting Graphene: Converting Graphene from Semimetal to Semiconductor”, Nanoscale, 5:4 (2013), 1353–1368 | DOI

[6] M.E. Belenkov, A.E. Kochengin, V.M. Chernov, E.A. Belenkov, “Graphene Polymorphs”, Journal of Physics: Conference Series, 1399:2 (2019), 022024, 5 pp. | DOI

[7] D.C. Elias, R.R. Nair, T.M.G. Mohiuddin et al., “Control of Graphene's Properties by Reversible Hydrogenation: Evidence for Graphane”, Science, 323:5914 (2009), 610–613 | DOI

[8] J.T. Robinson, J.S. Burgess, C.E. Junkermeier et al., “Properties of Fluorinated Graphene Films”, Nano Letters, 10 (2010), 3001–3005 | DOI

[9] B. Li, L. Zhou, D. Wu et al., “Photochemical Chlorination of graphene”, ACS Nano, 5 (2011), 5957–5961 | DOI

[10] D. Chen, H. Feng, J. Li, “Graphene Oxide: Preparation, Functionalization, and Electrochemical Applications”, Chem. Rev., 112:11 (2012), 6027–6053 | DOI

[11] R.R. Nair, W. Ren, R. Jalil et al., “Fluorographene: a Two-Dimensional Counterpart of Teflon”, Small, 6:24 (2010), 2877–2884 | DOI

[12] L.G. Bulusheva, A.V. Okotrub, “8 - Electronic Structure of Fluorinated Graphene”, New fluorinated carbons: fundamentals and applications, 2017, 177–213 | DOI

[13] M.E. Belenkov, V.M. Chernov, E.A. Belenkov, “Structure of Fluorographene and its Polymorphous Varieties”, Journal of Physics: Conference Series, 1124:2 (2018), 022010, 6 pp. | DOI

[14] M.E. Belenkov, V.M. Chernov, E.A. Belenkov, “Simulation of the Structure and Electronic Properties of Fluorographene Polymorphs Formed on the Basis of 4-8 Graphene”, IOP Conference Series: Materials Science and Engineering, 537:2 (2019), 022058, 5 pp. | DOI

[15] K.S. Grishakov, K.P. Katin, V.S. Prudkovskiy, M.M. Maslov, “Relative Stabilities of Various fully Functionalized Graphene Polymorphs under Mechanical Strain and Electric Field”, Applied Surface Science, 463 (2019), 1051–1057 | DOI

[16] M.E. Belenkov, V.M. Chernov, E.A. Belenkov, “Martensitic Structural Transformations of Fluorographene Polymorphic Varieties”, Materials Research Proceedings, 9 (2018), 148–151 | DOI

[17] M.E. Belenkov, V.M. Chernov, “Kristallicheskaya i elektronnaya struktura 3-12 grafena, funktsionalizirovannogo ftorom”, Fiziko-khimicheskie aspekty izucheniya klasterov, nanostruktur i nanomaterialov, 2019, no. 11, 406–413

[18] M.E. Belenkov, V.M. Chernov, “Ab initio raschety kristallicheskoi i elektronnoi struktury polimorfov 5-7 ftorografena”, Pisma o materialakh, 10:3 (2020), 254–259

[19] M.E. Belenkov, V.M. Chernov, “Ab initio raschety kristallicheskoi i elektronnoi struktury polimorfov 5-7 ftorografena”, Fiziko-khimicheskie aspekty izucheniya klasterov, nanostruktur i nanomaterialov, 2020, no. 12, 326–337

[20] M.E. Belenkov, V.M. Chernov, E.A. Belenkov, V.M. Morilova, “Structure and Electronic Properties of 5-7 Graphene”, IOP Conference Series: Materials Science and Engineering, 447 (2018), 012005, 4 pp. | DOI

[21] E.A. Belenkov, A.E. Kochengin, “Struktura i elektronnye svoistva kristallov, sostoyaschikh iz grafenovykh sloev L6, L4-8, L3-12 i L4-6-12”, Fizika tverdogo tela, 57:10 (2015), 2071–2078

[22] K.S. Novoselov, A.K. Geim, S.V. Morozov et al., “Electric Field Effect in Atomically Thin Carbon Films”, Science, 306:5696 (2004), 666–669 | DOI

[23] E.A. Belenkov, “Formirovanie struktury grafita v melkokristallicheskom uglerode”, Neorganicheskie materialy, 37:9 (2001), 1094–1101

[24] A.I. Kitaigorodskii, Molekulyarnye kristally, Nauka, M., 1971, 424 pp.

[25] S. Alvarez, “A Cartography of the van der Waals Territories”, Dalton Transactions, 42:24 (2013), 8617–8636 | DOI

[26] A. Varadwaj, H.M. Marques, P.R. Varadwaj, “Is the Fluorine in Molecules Dispersive? Is Molecular Electrostatic Potential a valid Property to Explore Fluorine-Centered non-Covalent Interactions?”, Molecules, 24 (2019), 379, 29 pp. | DOI

[27] W. Koch, M.C. Holthausen, A Chemist's Guide to Density Functional Theory, Wiley VCH Verlag GmbH, Weinheim-New York-Chichester-Brisbane-Singapore-Totonto, 2001, 313 pp.

[28] D.C. Langreth, M.J. Mehl, “Beyond the Local-Density Approximation in Calculations of Ground-State Electronic Properties”, Physical Review B, 28:4 (1983), 1809–1834 | DOI

[29] P. Giannozzi, S. Baroni, N. Bonini et al., “QUANTUM ESPRESSO: a Modular and Open-Source Software Project for Quantum Simulations of Materials”, Journal of Physics: Condensed Matter, 21:39 (2009), 395502, 19 pp. | DOI