Keywords: method of fictitious components, method of iterative extensions.
@article{VYURM_2021_13_1_a3,
author = {A. L. Ushakov},
title = {Analysis of the mixed boundary value problem for the {Poisson's} equation},
journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matematika, mehanika, fizika},
pages = {29--40},
year = {2021},
volume = {13},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VYURM_2021_13_1_a3/}
}
TY - JOUR AU - A. L. Ushakov TI - Analysis of the mixed boundary value problem for the Poisson's equation JO - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika PY - 2021 SP - 29 EP - 40 VL - 13 IS - 1 UR - http://geodesic.mathdoc.fr/item/VYURM_2021_13_1_a3/ LA - ru ID - VYURM_2021_13_1_a3 ER -
%0 Journal Article %A A. L. Ushakov %T Analysis of the mixed boundary value problem for the Poisson's equation %J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika %D 2021 %P 29-40 %V 13 %N 1 %U http://geodesic.mathdoc.fr/item/VYURM_2021_13_1_a3/ %G ru %F VYURM_2021_13_1_a3
A. L. Ushakov. Analysis of the mixed boundary value problem for the Poisson's equation. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 13 (2021) no. 1, pp. 29-40. http://geodesic.mathdoc.fr/item/VYURM_2021_13_1_a3/
[1] J.-P. Aubin, Approximation of Elliptic Boundary-Value Problems, Wiley-Interscience, New York, 1972, 360 pp. | MR | Zbl
[2] S.B. Sorokin, “An economical Algorithm for Numerical Solution of the Problem of Identifying the Right-Hand Side of the Poisson Equation”, Journal of Applied and Industrial Mathematics, 12:2 (2018), 362–368 | DOI | MR | Zbl
[3] S.B. Sorokin, “An Efficient Direct Method for the Numerical Solution to the Cauchy Problem for the Laplace Equation”, Numerical Analysis and Applications, 12:12 (2019), 87–103 | DOI | MR
[4] A.L. Ushakov, “Investigation of a Mixed Boundary Value Problem for the Poisson Equation”, International Russian Automation Conference (RusAutoCon) (Sochi, Russia, 2020), 2020, 273–278
[5] A.L. Ushakov, “O modelirovanii deformatsii plastin”, Vestnik YuUrGU. Seriya: Matematicheskoe modelirovanie i programmirovanie, 8:2 (2015), 138–142 | Zbl
[6] A.M. Matsokin, S.V. Nepomnyaschikh, “Metod fiktivnogo prostranstva i yavnye operatory prodolzheniya”, Zh. vychisl. matem. i matem. fiz., 33:1 (1993), 52–68 | MR | Zbl
[7] G.I. Marchuk, Yu.A. Kuznetsov, A.M. Matsokin, “Fictitious Domain and Domain Decomposion Methods”, Russian Journal of Numerical Analysis and Mathematical Modelling, 1:1 (1986), 3–35 | DOI | MR | Zbl
[8] R.E. Bank, D.J. Rose, “Marching Algorithms for Elliptic Boundary Value Problems”, SIAM J. on Numer. Anal., 14:5 (1977), 792–829 | DOI | MR | Zbl
[9] T. Manteuffel, “An Incomlete Factorization Technigue for Positive Definite Linear Systems”, Math. Comput., 38:1 (1980), 114–123 | MR
[10] P.N. Swarztrauber, “A Direct Method for Discrete Solution of Separable Elliptic Equations”, SIAM Journal on Numerical Analysis, 11:6 (1974), 1136–1150 | DOI | MR
[11] P.N. Swarztrauber, “The Method of Cyclic Reduction, Fourier analysis and FACR Algorithms for the Discrete Solution of Poisson's Equations on a Rectangle”, SIAM Review, 19:3 (1977), 490–501 | DOI | MR | Zbl