On processing noisy contrast images
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 13 (2021) no. 1, pp. 14-21 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The problem of noise reduction at sharp transitions of brightness in digital noisy contrast images is considered. In addition to the useful signal, digital images obtained by digitizing an analogue signal with a digital photo matrix have a noise component. Moreover, to obtain a digital image in the standard RGB color model, a demosaicing interpolation algorithm must be applied to the image obtained from a digital photo matrix. Due to such transformations, the Gaussian distribution of noise in a digital noisy image is violated. Using a standard image digitization model for noise reduction is not effective. For more effective noise reduction, the digital image is transferred from the RGB color model to the HSV or LAB color model, where the brightness and color components of the digital noise can be filtered separately. Color noise is suppressed in the color channels of the image using a Gaussian filter. Noise reduction in the brightness channel of a digital image is more difficult task, especially at the edge of sharp transitions of brightness. To suppress the brightness noise in contrast images, it is proposed to use a nonlinear filter based on the generalized method of least absolute values (GMLAV). The process of smoothing the contrast noisy transition by the GMLAV-filter is described, and its efficiency is shown in comparison with the median filtration.
Keywords: noisy contrast image, noise reduction, image filtering, color model, generalized method of least absolute values.
Mots-clés : non-Gaussian noise distribution, contrast transition
@article{VYURM_2021_13_1_a1,
     author = {V. A. Surin},
     title = {On processing noisy contrast images},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matematika, mehanika, fizika},
     pages = {14--21},
     year = {2021},
     volume = {13},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VYURM_2021_13_1_a1/}
}
TY  - JOUR
AU  - V. A. Surin
TI  - On processing noisy contrast images
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
PY  - 2021
SP  - 14
EP  - 21
VL  - 13
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VYURM_2021_13_1_a1/
LA  - ru
ID  - VYURM_2021_13_1_a1
ER  - 
%0 Journal Article
%A V. A. Surin
%T On processing noisy contrast images
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
%D 2021
%P 14-21
%V 13
%N 1
%U http://geodesic.mathdoc.fr/item/VYURM_2021_13_1_a1/
%G ru
%F VYURM_2021_13_1_a1
V. A. Surin. On processing noisy contrast images. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 13 (2021) no. 1, pp. 14-21. http://geodesic.mathdoc.fr/item/VYURM_2021_13_1_a1/

[1] R.S. Gonsales, R.E. Vuds, Tsifrovaya obrabotka izobrazhenii, Tekhnosfera, M., 2012, 1104 pp.

[2] U. Prett, D.S. Lebedev, Tsifrovaya obrabotka izobrazhenii, v 2-kh kn., v. 1, Mir, M., 1982, 310 pp.; т. 2, 790 с.

[3] L.P. Yaroslavskii, Vvedenie v tsifrovuyu obrabotku izobrazhenii, Sovetskoe radio, M., 1979, 312 pp.

[4] V.V. Nikitin, A.K. Tsytsulin, Televidenie v sistemakh fizicheskoi zaschity, SPbGETU «LETI», SPb., 2001, 132 pp.

[5] S.S. Bukhtoyarov, A.L. Priorov, I.V. Apalkov, V.V. Khryaschev, “Primenenie pereklyuchayuschikhsya mediannykh filtrov dlya vosstanovleniya zashumlennykh izobrazhenii”, Voprosy radioelektroniki: Seriya obschetekhnicheskaya, 4:2 (2006), 137–147

[6] N.V. Mamaev, A.S. Lukin, D.V. Yurin, “Lokalno-adaptivnyi algoritm nelokalnogo srednego na osnove razlozheniya po funktsiyam Ermita”, Programmirovanie, 40:4 (2014), 46–54

[7] V.A. Surin, A.N. Tyrsin, “Research of properties of digital noise in contrast images”, CEUR Workshop Proceeding, 1710, 2016, 340–348 http://ceur-ws.org/Vol-1710/paper34.pdf

[8] G. de Haan, T.G. Kwaaitaal-Spassova, M.M. Larragy et al., “Television noise reduction IC”, IEEE Transactions on Consumer Electronics, 44:1 (1998), 143–154 | DOI

[9] E.A. Iofis (red.), Sintez tsveta. Fotokinotekhnika, Entsiklopediya, Sovetskaya entsiklopediya, M., 1981, 447 pp.

[10] A. Davies, P. Fennessy, Digital Imaging for Photographers, Paperback, Focal Press, 2001, 214 pp.

[11] CIE Recommendations on Uniform Color Spaces, Color Difference Equations, Psychometric Color Terms, Supplement 2 to CIE publication 15 (E1.3.1) 1971/(TC1.3), Central Bureau of the Commission Internationale de l'Éclairage, Vienna, Austria, 1978

[12] T.S. Khuang, Dzh.-O. Eklund, G.Dzh. Nussbaumer i dr., Bystrye algoritmy v tsifrovoi obrabotke izobrazhenii. Preobrazovaniya i mediannye filtry, Radio i svyaz, M., 1984, 221 pp.

[13] J.W. Tukey, “Discussion, Emphasizing the Connection Between Analysis of Variance and Spectrum Analysis”, Technometrics, 3:2, 191–219 | DOI | MR | Zbl

[14] V.A. Surin, A.N. Tyrsin, “Model nelineinogo filtra dlya tsifrovoi obrabotki kontrastnykh izobrazhenii”, Avtometriya, 54:2 (2018), 54–62

[15] A.N. Tyrsin, “Robastnoe postroenie regressionnykh zavisimostei na osnove obobschennogo metoda naimenshikh modulei”, Zapiski nauchnykh seminarov POMI RAN, 328, 2005, 236–250 | Zbl