@article{VYURM_2020_12_4_a4,
author = {M. A. Sagadeeva},
title = {Construction an observation in the {Shestakov{\textendash}Sviridyuk} model in terms of multidimensional {\textquotedblleft}white noise{\textquotedblright} distortion},
journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matematika, mehanika, fizika},
pages = {41--50},
year = {2020},
volume = {12},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VYURM_2020_12_4_a4/}
}
TY - JOUR AU - M. A. Sagadeeva TI - Construction an observation in the Shestakov–Sviridyuk model in terms of multidimensional “white noise” distortion JO - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika PY - 2020 SP - 41 EP - 50 VL - 12 IS - 4 UR - http://geodesic.mathdoc.fr/item/VYURM_2020_12_4_a4/ LA - ru ID - VYURM_2020_12_4_a4 ER -
%0 Journal Article %A M. A. Sagadeeva %T Construction an observation in the Shestakov–Sviridyuk model in terms of multidimensional “white noise” distortion %J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika %D 2020 %P 41-50 %V 12 %N 4 %U http://geodesic.mathdoc.fr/item/VYURM_2020_12_4_a4/ %G ru %F VYURM_2020_12_4_a4
M. A. Sagadeeva. Construction an observation in the Shestakov–Sviridyuk model in terms of multidimensional “white noise” distortion. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 12 (2020) no. 4, pp. 41-50. http://geodesic.mathdoc.fr/item/VYURM_2020_12_4_a4/
[1] V. A. Granovskii, Dynamic Measurements. Basics of Metrological Support, L., 1984, 257 pp. (in Russ.)
[2] A. L. Shestakov, Methods of the Theory of Automatic Control in Dynamic Measurements, Publishing center of SUSU, Chelyabinsk, 2013, 256 pp. (in Russ.)
[3] G. A. Sviridyuk, A. A. Efremov, “Optimal Control of a Class of Linear Degenerate Equations”, Doklady Mathematics, 59:1 (1999), 157–159 | MR | Zbl
[4] A. L. Shestakov, G. A. Sviridyuk, “A New Approach to Measurement of Dynamically Distorted Signals”, Bulletin of the South Ural State University. Series: Mathematical Modelling, Programming and Computer Software, 2010, no. 16(192), 116–120 (in Russ.) | Zbl
[5] A. V. Keller, “Numerical Solutions of the Optimal Control Theory for Degenerate Linear System of Equations with Showalter-Sidorov Initial Conditions”, Bulletin of the South Ural State University. Series: Mathematical Modelling, Programming and Computer Software, 2008, no. 27, 50–56 (in Russ.) | Zbl
[6] A. V. Keller, Numerical Investigation of the Optimal Control Problem for Leontief Type Models, Dr. phys. and math. sci. diss., Chelyabinsk, 2011, 237 pp.
[7] A. L. Shestakov, A. V. Keller, E. I. Nazarova, “Numerical Solution of the Optimal Measurement Problem”, Automation and Remote Control, 73:1 (2012), 97–104 | DOI | MR | Zbl
[8] A.L. Shestakov, A.V. Keller, G.A. Sviridyuk, “The Theory of Optimal Measurements”, Journal of Computational and Engineering Mathematics, 1:1 (2014), 3–16 | DOI | Zbl
[9] A. L. Shestakov, A. V. Keller, A. A. Zamyshlyaeva, N. A. Manakova, S. A. Zagrebina, G. A. Sviridyuk, “The Optimal Measurements Theory as a New Paradigm in the Metrology”, Journal of Computational and Engineering Mathematics, 7:1 (2020), 3–23 | DOI
[10] A. V. Keller, A. L. Shestakov, G. A. Sviridyuk, Y. V. Khudyakov, “The Numerical Algorithms for the Measurement of the Deterministic and Stochastic Signals”, Semigroups of Operators Theory and Applications, Springer Proceedings in Mathematics Statistics, 113, eds. Banasiak J., Bobrowski A., Lachowicz M., Springer, Cham, 2015, 183–195 | DOI | MR | Zbl
[11] M. A. Sagadeeva, “On Nonstationary Optimal Measurement Problem for the Measuring Transducer Model”, 2016 2nd International Conference on Industrial Engineering, Applications and Manufacturing (ICIEAM-2016), 2016, A/N 7911710 | DOI
[12] S. A. Zagrebina, A. V. Keller, “Some Generalizations of the Showalter-Sidorov Problem for Sobolev-Type Models”, Bulletin of the South Ural State University. Series “Mathematica Modelling, Programming Computer Software”, 8:2 (2015), 5–23 (in Russ.) | DOI | Zbl
[13] A. V. Keller, M. A. Sagadeeva, “Degenerate Matrix Groups and Degenerate Matrix Flows in Solving the Optimal Control Problem for Dynamic Balance Models of the Economy”, Semigroups of Operators Theory and Applications, SOTA 2018, Springer Proceedings in Mathematics Statistics, 325, eds. Banasiak J., Bobrowski A., Lachowicz M., Tomilov Y., Springer, Cham, 2020, 263–277 | DOI | MR | Zbl
[14] Yu. P. Pyt'ev, A. I. Chulichkov, Methods of Morphological Analysis of Images, Fizmatlit, M., 2010, 336 pp. (in Russ.)
[15] E. Nelson, Dynamical Theories of Brownian Motion, Princeton University Press, 1967, 142 pp. | MR | Zbl
[16] Yu.E. Gliklikh, Global and Stochastic Analysis with Applications to Mathematical Physics, Springer, London–Dordrecht–Heidelberg–N.Y., 2011, 436 pp. | MR | Zbl
[17] Yu. E. Gliklikh, O. O. Zheltikova, “On Existence of Optimal Solutions for Stochastic Differential Inclusions with Mean Derivatives”, Applicable Analysis, 93:1 (2014), 35–45 | DOI | MR | Zbl
[18] M. A. Sagadeeva, “Reconstruction of Observation from Distorted Data for the Optimal Dynamic Measurement Problem”, Bulletin of the South Ural State University. Series: Mathematical Modelling, Programming and Computer Software, 12:2 (2019), 82–96 (in Russ.) | DOI | MR | Zbl
[19] W. Leontief, Essays in Economics: Theories, Theorizing, Facts, and Policies, Oxford University Press, Inc, New York–London–Toronto, 1966, 252 pp.
[20] Yu. E. Boyarintsev, Linear and nonlinear algebro-differential systems, Nauka Publ, Novosibirsk, 2000, 222 pp. (in Russ.)
[21] R. Mäarz, “On Initial Value Problems in Differential-Algebraic Equations and their Numerical Treatment”, Computing, 35:1 (1985), 13–37 | DOI | MR
[22] A. A. Belov, A. P. Kurdyukov, Descriptor Systems and Control Tasks, Fizmatlit, M., 2015, 270 pp. (in Russ.)
[23] Yu.V. Khudyakov, “On Mathematical Modeling of the Measurement Transducers”, Journal of Computational and Engineering Mathematics, 3:3 (2016), 68–73 | DOI | MR
[24] Yu.V. Khudyakov, “On Adequacy of the Mathematical Model of the Optimal Dynamic Measurement”, Journal of Computational and Engineering Mathematics, 4:2 (2017), 14–25 | DOI | MR
[25] A. Eynshteyn, M. Smolukhovskiy, Brownian Motion, ONTI, M., 1936, 607 pp. (in Russ.)
[26] D. S. Demin, A. I. Chulichkov, “Filtering of monotonic convex noise-distorted signals and estimates of positions of special points”, Journal of Mathematical Sciences (New York), 172:6 (2011), 770–781 | DOI | MR | Zbl