Construction an observation in the Shestakov–Sviridyuk model in terms of multidimensional “white noise” distortion
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 12 (2020) no. 4, pp. 41-50 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The Shestakov–Sviridyuk model is a mathematical model of a measuring unit used to reconstruct a dynamically distorted signal with the help of experimental data. This model is also called the optimal dynamic measurement problem. The theory of optimal dynamic measurement is based on the problem of minimizing the difference between the values of a virtual observation obtained using a computational model and experimental data, usually distorted by some disturbances. The article describes the Shestakov–Sviridyuk model of optimal dynamic measurement in terms of various types of disturbances. It focuses on the preliminary stage of the study of the optimal dynamic measurement problem, namely, the Pyt'ev–Chulichkov method for constructing observation data, i. e. converting experimental data to clean them from disturbances in the form of “white noise”, which is understood as the Nelson–Glicklich derivative of the multidimensional Wiener process. To use this method, a priori information on the properties of the functions describing the observation, is used.
Keywords: optimal dynamic measurement, the Leontief-type system, resolving flow of matrices, multidimensional Wiener process, Nelson–Glicklich derivative.
@article{VYURM_2020_12_4_a4,
     author = {M. A. Sagadeeva},
     title = {Construction an observation in the {Shestakov{\textendash}Sviridyuk} model in terms of multidimensional {\textquotedblleft}white noise{\textquotedblright} distortion},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matematika, mehanika, fizika},
     pages = {41--50},
     year = {2020},
     volume = {12},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VYURM_2020_12_4_a4/}
}
TY  - JOUR
AU  - M. A. Sagadeeva
TI  - Construction an observation in the Shestakov–Sviridyuk model in terms of multidimensional “white noise” distortion
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
PY  - 2020
SP  - 41
EP  - 50
VL  - 12
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VYURM_2020_12_4_a4/
LA  - ru
ID  - VYURM_2020_12_4_a4
ER  - 
%0 Journal Article
%A M. A. Sagadeeva
%T Construction an observation in the Shestakov–Sviridyuk model in terms of multidimensional “white noise” distortion
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
%D 2020
%P 41-50
%V 12
%N 4
%U http://geodesic.mathdoc.fr/item/VYURM_2020_12_4_a4/
%G ru
%F VYURM_2020_12_4_a4
M. A. Sagadeeva. Construction an observation in the Shestakov–Sviridyuk model in terms of multidimensional “white noise” distortion. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 12 (2020) no. 4, pp. 41-50. http://geodesic.mathdoc.fr/item/VYURM_2020_12_4_a4/

[1] V. A. Granovskii, Dynamic Measurements. Basics of Metrological Support, L., 1984, 257 pp. (in Russ.)

[2] A. L. Shestakov, Methods of the Theory of Automatic Control in Dynamic Measurements, Publishing center of SUSU, Chelyabinsk, 2013, 256 pp. (in Russ.)

[3] G. A. Sviridyuk, A. A. Efremov, “Optimal Control of a Class of Linear Degenerate Equations”, Doklady Mathematics, 59:1 (1999), 157–159 | MR | Zbl

[4] A. L. Shestakov, G. A. Sviridyuk, “A New Approach to Measurement of Dynamically Distorted Signals”, Bulletin of the South Ural State University. Series: Mathematical Modelling, Programming and Computer Software, 2010, no. 16(192), 116–120 (in Russ.) | Zbl

[5] A. V. Keller, “Numerical Solutions of the Optimal Control Theory for Degenerate Linear System of Equations with Showalter-Sidorov Initial Conditions”, Bulletin of the South Ural State University. Series: Mathematical Modelling, Programming and Computer Software, 2008, no. 27, 50–56 (in Russ.) | Zbl

[6] A. V. Keller, Numerical Investigation of the Optimal Control Problem for Leontief Type Models, Dr. phys. and math. sci. diss., Chelyabinsk, 2011, 237 pp.

[7] A. L. Shestakov, A. V. Keller, E. I. Nazarova, “Numerical Solution of the Optimal Measurement Problem”, Automation and Remote Control, 73:1 (2012), 97–104 | DOI | MR | Zbl

[8] A.L. Shestakov, A.V. Keller, G.A. Sviridyuk, “The Theory of Optimal Measurements”, Journal of Computational and Engineering Mathematics, 1:1 (2014), 3–16 | DOI | Zbl

[9] A. L. Shestakov, A. V. Keller, A. A. Zamyshlyaeva, N. A. Manakova, S. A. Zagrebina, G. A. Sviridyuk, “The Optimal Measurements Theory as a New Paradigm in the Metrology”, Journal of Computational and Engineering Mathematics, 7:1 (2020), 3–23 | DOI

[10] A. V. Keller, A. L. Shestakov, G. A. Sviridyuk, Y. V. Khudyakov, “The Numerical Algorithms for the Measurement of the Deterministic and Stochastic Signals”, Semigroups of Operators Theory and Applications, Springer Proceedings in Mathematics Statistics, 113, eds. Banasiak J., Bobrowski A., Lachowicz M., Springer, Cham, 2015, 183–195 | DOI | MR | Zbl

[11] M. A. Sagadeeva, “On Nonstationary Optimal Measurement Problem for the Measuring Transducer Model”, 2016 2nd International Conference on Industrial Engineering, Applications and Manufacturing (ICIEAM-2016), 2016, A/N 7911710 | DOI

[12] S. A. Zagrebina, A. V. Keller, “Some Generalizations of the Showalter-Sidorov Problem for Sobolev-Type Models”, Bulletin of the South Ural State University. Series “Mathematica Modelling, Programming Computer Software”, 8:2 (2015), 5–23 (in Russ.) | DOI | Zbl

[13] A. V. Keller, M. A. Sagadeeva, “Degenerate Matrix Groups and Degenerate Matrix Flows in Solving the Optimal Control Problem for Dynamic Balance Models of the Economy”, Semigroups of Operators Theory and Applications, SOTA 2018, Springer Proceedings in Mathematics Statistics, 325, eds. Banasiak J., Bobrowski A., Lachowicz M., Tomilov Y., Springer, Cham, 2020, 263–277 | DOI | MR | Zbl

[14] Yu. P. Pyt'ev, A. I. Chulichkov, Methods of Morphological Analysis of Images, Fizmatlit, M., 2010, 336 pp. (in Russ.)

[15] E. Nelson, Dynamical Theories of Brownian Motion, Princeton University Press, 1967, 142 pp. | MR | Zbl

[16] Yu.E. Gliklikh, Global and Stochastic Analysis with Applications to Mathematical Physics, Springer, London–Dordrecht–Heidelberg–N.Y., 2011, 436 pp. | MR | Zbl

[17] Yu. E. Gliklikh, O. O. Zheltikova, “On Existence of Optimal Solutions for Stochastic Differential Inclusions with Mean Derivatives”, Applicable Analysis, 93:1 (2014), 35–45 | DOI | MR | Zbl

[18] M. A. Sagadeeva, “Reconstruction of Observation from Distorted Data for the Optimal Dynamic Measurement Problem”, Bulletin of the South Ural State University. Series: Mathematical Modelling, Programming and Computer Software, 12:2 (2019), 82–96 (in Russ.) | DOI | MR | Zbl

[19] W. Leontief, Essays in Economics: Theories, Theorizing, Facts, and Policies, Oxford University Press, Inc, New York–London–Toronto, 1966, 252 pp.

[20] Yu. E. Boyarintsev, Linear and nonlinear algebro-differential systems, Nauka Publ, Novosibirsk, 2000, 222 pp. (in Russ.)

[21] R. Mäarz, “On Initial Value Problems in Differential-Algebraic Equations and their Numerical Treatment”, Computing, 35:1 (1985), 13–37 | DOI | MR

[22] A. A. Belov, A. P. Kurdyukov, Descriptor Systems and Control Tasks, Fizmatlit, M., 2015, 270 pp. (in Russ.)

[23] Yu.V. Khudyakov, “On Mathematical Modeling of the Measurement Transducers”, Journal of Computational and Engineering Mathematics, 3:3 (2016), 68–73 | DOI | MR

[24] Yu.V. Khudyakov, “On Adequacy of the Mathematical Model of the Optimal Dynamic Measurement”, Journal of Computational and Engineering Mathematics, 4:2 (2017), 14–25 | DOI | MR

[25] A. Eynshteyn, M. Smolukhovskiy, Brownian Motion, ONTI, M., 1936, 607 pp. (in Russ.)

[26] D. S. Demin, A. I. Chulichkov, “Filtering of monotonic convex noise-distorted signals and estimates of positions of special points”, Journal of Mathematical Sciences (New York), 172:6 (2011), 770–781 | DOI | MR | Zbl