On polynomial differential equations of the second order on a circle without singular points
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 12 (2020) no. 4, pp. 33-40 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper, autonomous differential equations of the second order are considered, the right-hand sides of which are polynomials of degree $n$ with respect to the first derivative with periodic continuously differentiable coefficients, and the corresponding vector fields on the cylindrical phase space. The free term and the leading coefficient of the polynomial is assumed not to vanish, which is equivalent to the absence of singular points of the vector field. Rough equations are considered for which the topological structure of the phase portrait does not change under small perturbations in the class of equations under consideration. It is proved that the equation is rough if and only if all its closed trajectories are hyperbolic. Rough equations form an open and everywhere dense set in the space of the equations under consideration. It is shown that for $n > 4$ an equation of degree $n$ can have arbitrarily many limit cycles. For $n = 4$, the possible number of limit cycles is determined in the case when the free term and the leading coefficient of the equation have opposite signs.
Keywords: differential equation of the second order, polynomial right-hand side, cylindrical phase space, number of limit cycles, roughness.
@article{VYURM_2020_12_4_a3,
     author = {V. Sh. Roitenberg},
     title = {On polynomial differential equations of the second order on a circle without singular points},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matematika, mehanika, fizika},
     pages = {33--40},
     year = {2020},
     volume = {12},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VYURM_2020_12_4_a3/}
}
TY  - JOUR
AU  - V. Sh. Roitenberg
TI  - On polynomial differential equations of the second order on a circle without singular points
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
PY  - 2020
SP  - 33
EP  - 40
VL  - 12
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VYURM_2020_12_4_a3/
LA  - ru
ID  - VYURM_2020_12_4_a3
ER  - 
%0 Journal Article
%A V. Sh. Roitenberg
%T On polynomial differential equations of the second order on a circle without singular points
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
%D 2020
%P 33-40
%V 12
%N 4
%U http://geodesic.mathdoc.fr/item/VYURM_2020_12_4_a3/
%G ru
%F VYURM_2020_12_4_a3
V. Sh. Roitenberg. On polynomial differential equations of the second order on a circle without singular points. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 12 (2020) no. 4, pp. 33-40. http://geodesic.mathdoc.fr/item/VYURM_2020_12_4_a3/

[1] V. Sh. Roytenberg, “On Polynomial Differential Equations of Second Order without Singular Points”, interuniversity collection of scientific papers, Mathematics and natural sciences. Theory and practice, 12, Izd. dom YaGTU Publ, Yaroslavl', 2017, 77–91 (in Russ.)

[2] V. A. Pliss, “On the Number of Periodic Solutions of Differential Equations with Polynomial Right-Hand Side”, DAN SSSR, 127:5 (1959), 965–968 (in Russ.) | Zbl

[3] A.L. Neto, “On the Number of Solutions of the Equation for which $x(0)=x(1)$”, Inventiones mathematicae, 59:2 (1980), 67–76 | DOI | MR | Zbl

[4] A. A. Panov, “On the Diversity of Poincaré Mappings for Cubic Equations with Variable Coefficients”, Funct. Anal. Its Appl., 33:4 (1999), 310–312 | DOI | MR | Zbl

[5] A. Casull, A. Guillamon, “Limit Cycles for Generalized Abel Equations”, J. Bifurcation and Chaos, 16:12 (2006), 3737–3745 | DOI | MR

[6] V. Sh. Roytenberg, “On the Number of Periodic Solutions of some Polynomial Differential Equations with Periodic Coefficients”, BSU bulletin. Mathematics, Informatics, 2020, no. 1, 28–34 (in Russ.) | DOI | MR

[7] A. A. Andronov, E. A. Leontovich, I. I. Gordon, A. G. Mayer, The theory of bifurcations of dynamical systems on the plane, Nauka, M., 1967, 487 pp. (in Russ.) | MR

[8] C. Robinson, “Structural stability of vector fields”, Annals of Mathematics. Second Series, 99:1 (1974), 154–175 | DOI | MR | Zbl

[9] Yu. N. Bibikov, General Course of Ordinary Differential Equations, Izd-vo Leningradskogo universiteta Publ., Leningrad, 1981, 232 pp. (in Russ.)

[10] G. G. Ivanov, G. V. Alferov, V. S. Korolev, E. A. Selitskaya, “Periodic Solutions of Differential Equations”, Vestnik Permskogo universiteta. Matematika. Mehanika. Informatika, 2019, no. 2(46), 5–15 (in Russ.) | DOI