Cauchy fractional derivative
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 12 (2020) no. 4, pp. 28-32

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we introduce a new sort of fractional derivative. For this, we consider the Cauchy's integral formula for derivatives and modify it by using Laplace transform. So, we obtain the fractional derivative formula $F^{(\alpha)}(s) = L\{(-1)^{(\alpha)}L^{-1}\{F(s)\}\}$. Also, we find a relation between Weyl's fractional derivative and the formula above. Finally, we give some examples for fractional derivative of some elementary functions.
Keywords: Weyl's fractional derivative, Cauchy's integral formula for derivatives.
Mots-clés : fractional calculus, Laplace transform
@article{VYURM_2020_12_4_a2,
     author = {U. Kaya},
     title = {Cauchy fractional derivative},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matematika, mehanika, fizika},
     pages = {28--32},
     publisher = {mathdoc},
     volume = {12},
     number = {4},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VYURM_2020_12_4_a2/}
}
TY  - JOUR
AU  - U. Kaya
TI  - Cauchy fractional derivative
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
PY  - 2020
SP  - 28
EP  - 32
VL  - 12
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VYURM_2020_12_4_a2/
LA  - en
ID  - VYURM_2020_12_4_a2
ER  - 
%0 Journal Article
%A U. Kaya
%T Cauchy fractional derivative
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
%D 2020
%P 28-32
%V 12
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VYURM_2020_12_4_a2/
%G en
%F VYURM_2020_12_4_a2
U. Kaya. Cauchy fractional derivative. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 12 (2020) no. 4, pp. 28-32. http://geodesic.mathdoc.fr/item/VYURM_2020_12_4_a2/