Cauchy fractional derivative
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 12 (2020) no. 4, pp. 28-32
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper, we introduce a new sort of fractional derivative. For this, we consider the Cauchy's integral formula for derivatives and modify it by using Laplace transform. So, we obtain the fractional derivative formula $F^{(\alpha)}(s) = L\{(-1)^{(\alpha)}L^{-1}\{F(s)\}\}$. Also, we find a relation between Weyl's fractional derivative and the formula above. Finally, we give some examples for fractional derivative of some elementary functions.
Keywords:
Weyl's fractional derivative, Cauchy's integral formula for derivatives.
Mots-clés : fractional calculus, Laplace transform
Mots-clés : fractional calculus, Laplace transform
@article{VYURM_2020_12_4_a2,
author = {U. Kaya},
title = {Cauchy fractional derivative},
journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matematika, mehanika, fizika},
pages = {28--32},
publisher = {mathdoc},
volume = {12},
number = {4},
year = {2020},
language = {en},
url = {http://geodesic.mathdoc.fr/item/VYURM_2020_12_4_a2/}
}
TY - JOUR AU - U. Kaya TI - Cauchy fractional derivative JO - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika PY - 2020 SP - 28 EP - 32 VL - 12 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VYURM_2020_12_4_a2/ LA - en ID - VYURM_2020_12_4_a2 ER -
U. Kaya. Cauchy fractional derivative. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 12 (2020) no. 4, pp. 28-32. http://geodesic.mathdoc.fr/item/VYURM_2020_12_4_a2/