Cauchy fractional derivative
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 12 (2020) no. 4, pp. 28-32
Cet article a éte moissonné depuis la source Math-Net.Ru
In this paper, we introduce a new sort of fractional derivative. For this, we consider the Cauchy's integral formula for derivatives and modify it by using Laplace transform. So, we obtain the fractional derivative formula $F^{(\alpha)}(s) = L\{(-1)^{(\alpha)}L^{-1}\{F(s)\}\}$. Also, we find a relation between Weyl's fractional derivative and the formula above. Finally, we give some examples for fractional derivative of some elementary functions.
Keywords:
Weyl's fractional derivative, Cauchy's integral formula for derivatives.
Mots-clés : fractional calculus, Laplace transform
Mots-clés : fractional calculus, Laplace transform
@article{VYURM_2020_12_4_a2,
author = {U. Kaya},
title = {Cauchy fractional derivative},
journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matematika, mehanika, fizika},
pages = {28--32},
year = {2020},
volume = {12},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/VYURM_2020_12_4_a2/}
}
U. Kaya. Cauchy fractional derivative. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 12 (2020) no. 4, pp. 28-32. http://geodesic.mathdoc.fr/item/VYURM_2020_12_4_a2/
[1] R.K. Raina, C.L. Koul, “On Weyl Fractional Calculus”, Proc. Amer. Math. Soc., 73:2 (1979), 188–192 | DOI | MR | Zbl
[2] L. Debnath, D. Bhatta, Integral Transforms and Their Applications, CRC press, Boca Raton, 2014, 818 pp. | MR
[3] V.L. Ahlfors, Complex Analysis, McGraw-Hill Inc., New York, 1979, 336 pp. | MR | Zbl