Integral equations method for a vector inverse problem
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 12 (2020) no. 4, pp. 19-27

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper discusses a dynamic system described by a system of linear differential equations. In many cases, instead of the true signal, which is perceived by the measuring device, a distorted signal is observed at the output, which significantly differs in structure, magnitude, and time parameters from the true one. Such distortions are generated by the operation principles of the measuring device, noise or interference contained in the input signal, and distortions arising from the operation of the device itself. Under these conditions, one of the problems of significant interest for applications is the inverse problem, restoring the input signal from the available information (including indirect information) about the signal at the output of the system and estimating the accuracy of the solutions obtained. The paper proposes a method of integral equations and its numerical implementation, which make it possible to effectively restore the input action on a dynamic system from indirect experimental information.
Keywords: linear dynamical system, indirect measurements, system of integral equations, regularization.
Mots-clés : pseudosolution
@article{VYURM_2020_12_4_a1,
     author = {V. I. Zaliapin and V. S. Shalgin},
     title = {Integral equations method for a vector inverse problem},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matematika, mehanika, fizika},
     pages = {19--27},
     publisher = {mathdoc},
     volume = {12},
     number = {4},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VYURM_2020_12_4_a1/}
}
TY  - JOUR
AU  - V. I. Zaliapin
AU  - V. S. Shalgin
TI  - Integral equations method for a vector inverse problem
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
PY  - 2020
SP  - 19
EP  - 27
VL  - 12
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VYURM_2020_12_4_a1/
LA  - ru
ID  - VYURM_2020_12_4_a1
ER  - 
%0 Journal Article
%A V. I. Zaliapin
%A V. S. Shalgin
%T Integral equations method for a vector inverse problem
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
%D 2020
%P 19-27
%V 12
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VYURM_2020_12_4_a1/
%G ru
%F VYURM_2020_12_4_a1
V. I. Zaliapin; V. S. Shalgin. Integral equations method for a vector inverse problem. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 12 (2020) no. 4, pp. 19-27. http://geodesic.mathdoc.fr/item/VYURM_2020_12_4_a1/