Integral equations method for a vector inverse problem
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 12 (2020) no. 4, pp. 19-27 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The paper discusses a dynamic system described by a system of linear differential equations. In many cases, instead of the true signal, which is perceived by the measuring device, a distorted signal is observed at the output, which significantly differs in structure, magnitude, and time parameters from the true one. Such distortions are generated by the operation principles of the measuring device, noise or interference contained in the input signal, and distortions arising from the operation of the device itself. Under these conditions, one of the problems of significant interest for applications is the inverse problem, restoring the input signal from the available information (including indirect information) about the signal at the output of the system and estimating the accuracy of the solutions obtained. The paper proposes a method of integral equations and its numerical implementation, which make it possible to effectively restore the input action on a dynamic system from indirect experimental information.
Keywords: linear dynamical system, indirect measurements, system of integral equations, regularization.
Mots-clés : pseudosolution
@article{VYURM_2020_12_4_a1,
     author = {V. I. Zaliapin and V. S. Shalgin},
     title = {Integral equations method for a vector inverse problem},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matematika, mehanika, fizika},
     pages = {19--27},
     year = {2020},
     volume = {12},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VYURM_2020_12_4_a1/}
}
TY  - JOUR
AU  - V. I. Zaliapin
AU  - V. S. Shalgin
TI  - Integral equations method for a vector inverse problem
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
PY  - 2020
SP  - 19
EP  - 27
VL  - 12
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VYURM_2020_12_4_a1/
LA  - ru
ID  - VYURM_2020_12_4_a1
ER  - 
%0 Journal Article
%A V. I. Zaliapin
%A V. S. Shalgin
%T Integral equations method for a vector inverse problem
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
%D 2020
%P 19-27
%V 12
%N 4
%U http://geodesic.mathdoc.fr/item/VYURM_2020_12_4_a1/
%G ru
%F VYURM_2020_12_4_a1
V. I. Zaliapin; V. S. Shalgin. Integral equations method for a vector inverse problem. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 12 (2020) no. 4, pp. 19-27. http://geodesic.mathdoc.fr/item/VYURM_2020_12_4_a1/

[1] A. N. Tikhonov, A. V. Goncharskiy, V. V. Stepanov, A. G. Yagola, Regularizing Algorithms and a Priori Information, Nauka, M., 1983, 198 pp. (in Russ.)

[2] A. G. Yagola, “Ill-posed Problems with Apriori Information”, Sib. Elektron. Mat. Izv., 7 (2010), 343–361 (in Russ.)

[3] V. V. Vasin, A. L. Ageev, Nekorrektnye zadachi s apriornoy informatsiey, UIF Nauka Publ., Ekaterinburg, 1993, 261 pp. (in Russ.)

[4] V. V. Voevodin, Computational Foundations of Linear Algebra, Nauka, M., 1977, 303 pp. (in Russ.) | MR

[5] A. L. Shestakov, Methods of the Automatical Control Theory to Dynamical Measurements, Publishing center of SUSU, Chelyabinsk, 2013, 256 pp. (in Russ.)

[6] F. Khartman, Ordinary Differential Equations, Mir, M., 1970, 720 pp. (in Russ.)

[7] A. N. Tikhonov, V. Ya. Arsenin, Methods for Solving IllPosed Problems, Nauka, M., 1986, 286 pp. (in Russ.)

[8] V. K. Ivanov, V. V. Vasin, V. P. Tanana, The Theory of Linear Ill-Posed Problems and its Applications, Nauka, M., 1978, 206 pp. (in Russ.)

[9] A. N. Tikhonov, A. V. Goncharskiy, V. V. Stepanov, A. G. Yagola, Numerical Methods for Solving Ill-Posed Problems, Nauka, M., 1990, 229 pp. (in Russ.) | MR

[10] V. I. Zalyapin, Yu. S. Popenko, Ye. V. Kharitonova, “Error Estimate of Numerical Method for Solving an Inverse Problem”, Bulletin of the South Ural State University. Ser. Mathematical Modelling, Programming Computer Software (Bulletin SUSU MMCS), 6:3 (2013), 51–58 (in Russ.) | Zbl

[11] A. S. Leonov, “On a Posteriori Accuracy Estimates for Solutions of Linear Ill-Posed Problems and Extra-Optimal Regularizing Algorithms”, Num. Meth. Prog., 11:1 (2010), 14–24 (in Russ.)