Mots-clés : pseudosolution
@article{VYURM_2020_12_4_a1,
author = {V. I. Zaliapin and V. S. Shalgin},
title = {Integral equations method for a vector inverse problem},
journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matematika, mehanika, fizika},
pages = {19--27},
year = {2020},
volume = {12},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VYURM_2020_12_4_a1/}
}
TY - JOUR AU - V. I. Zaliapin AU - V. S. Shalgin TI - Integral equations method for a vector inverse problem JO - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika PY - 2020 SP - 19 EP - 27 VL - 12 IS - 4 UR - http://geodesic.mathdoc.fr/item/VYURM_2020_12_4_a1/ LA - ru ID - VYURM_2020_12_4_a1 ER -
%0 Journal Article %A V. I. Zaliapin %A V. S. Shalgin %T Integral equations method for a vector inverse problem %J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika %D 2020 %P 19-27 %V 12 %N 4 %U http://geodesic.mathdoc.fr/item/VYURM_2020_12_4_a1/ %G ru %F VYURM_2020_12_4_a1
V. I. Zaliapin; V. S. Shalgin. Integral equations method for a vector inverse problem. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 12 (2020) no. 4, pp. 19-27. http://geodesic.mathdoc.fr/item/VYURM_2020_12_4_a1/
[1] A. N. Tikhonov, A. V. Goncharskiy, V. V. Stepanov, A. G. Yagola, Regularizing Algorithms and a Priori Information, Nauka, M., 1983, 198 pp. (in Russ.)
[2] A. G. Yagola, “Ill-posed Problems with Apriori Information”, Sib. Elektron. Mat. Izv., 7 (2010), 343–361 (in Russ.)
[3] V. V. Vasin, A. L. Ageev, Nekorrektnye zadachi s apriornoy informatsiey, UIF Nauka Publ., Ekaterinburg, 1993, 261 pp. (in Russ.)
[4] V. V. Voevodin, Computational Foundations of Linear Algebra, Nauka, M., 1977, 303 pp. (in Russ.) | MR
[5] A. L. Shestakov, Methods of the Automatical Control Theory to Dynamical Measurements, Publishing center of SUSU, Chelyabinsk, 2013, 256 pp. (in Russ.)
[6] F. Khartman, Ordinary Differential Equations, Mir, M., 1970, 720 pp. (in Russ.)
[7] A. N. Tikhonov, V. Ya. Arsenin, Methods for Solving IllPosed Problems, Nauka, M., 1986, 286 pp. (in Russ.)
[8] V. K. Ivanov, V. V. Vasin, V. P. Tanana, The Theory of Linear Ill-Posed Problems and its Applications, Nauka, M., 1978, 206 pp. (in Russ.)
[9] A. N. Tikhonov, A. V. Goncharskiy, V. V. Stepanov, A. G. Yagola, Numerical Methods for Solving Ill-Posed Problems, Nauka, M., 1990, 229 pp. (in Russ.) | MR
[10] V. I. Zalyapin, Yu. S. Popenko, Ye. V. Kharitonova, “Error Estimate of Numerical Method for Solving an Inverse Problem”, Bulletin of the South Ural State University. Ser. Mathematical Modelling, Programming Computer Software (Bulletin SUSU MMCS), 6:3 (2013), 51–58 (in Russ.) | Zbl
[11] A. S. Leonov, “On a Posteriori Accuracy Estimates for Solutions of Linear Ill-Posed Problems and Extra-Optimal Regularizing Algorithms”, Num. Meth. Prog., 11:1 (2010), 14–24 (in Russ.)