Equation of state for S2 glass-fiber reinforced polymer composite
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 12 (2020) no. 3, pp. 48-55 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This article presents the results of building a semi-empirical equation of state for S2 glass-fiber reinforced polymer composite. The equation of state includes the heat and cold elements. To describe the cold element of the equation of state, the substantiation has been performed for the choice of the form ($m$ and $n$) of the intermolecular potential adequately describing the structure of interactions in the composite material's components. To describe the heat element of this equation of state, the Helmholtz free energy has been determined with the Debye approximation. When building the equation of state, it has been shown that the equation of state for S2 glass-fiber reinforced polymer composite can be presented in the form of a Mie-Grüneisen equation. A type of dependency has been suggested between the Grüneisen coefficient and the volume, as well as an approach to determining the Grüneisen coefficient at the initial conditions of holding an experiment on the shock-wave exposure of the composite material. Experimental and calculated shock adiabats have been built for the for S2 glass-fiber reinforced polymer composite. The equality of the first and second derivatives of the experimental and theoretical shock adiabats in the point determining the initial state of the composite material has allowed to determine the coefficients being part of the structure ($m$ and $n$) of the intermolecular potential of the composite material's components. The comparing of the pressures calculated as per the work-determined equation of state for S2 glass-fiber reinforced polymer composite, with an experimental shock adiabat, has shown that those correspond with a difference of less than $1 \%$.
Keywords: equation of state, Helmholtz energy
Mots-clés : Debye approximation, Grüneisen coefficient, Mie-Grüneisen equation.
@article{VYURM_2020_12_3_a6,
     author = {Yu. M. Kovalev},
     title = {Equation of state for {S2} glass-fiber reinforced polymer composite},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matematika, mehanika, fizika},
     pages = {48--55},
     year = {2020},
     volume = {12},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VYURM_2020_12_3_a6/}
}
TY  - JOUR
AU  - Yu. M. Kovalev
TI  - Equation of state for S2 glass-fiber reinforced polymer composite
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
PY  - 2020
SP  - 48
EP  - 55
VL  - 12
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VYURM_2020_12_3_a6/
LA  - ru
ID  - VYURM_2020_12_3_a6
ER  - 
%0 Journal Article
%A Yu. M. Kovalev
%T Equation of state for S2 glass-fiber reinforced polymer composite
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
%D 2020
%P 48-55
%V 12
%N 3
%U http://geodesic.mathdoc.fr/item/VYURM_2020_12_3_a6/
%G ru
%F VYURM_2020_12_3_a6
Yu. M. Kovalev. Equation of state for S2 glass-fiber reinforced polymer composite. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 12 (2020) no. 3, pp. 48-55. http://geodesic.mathdoc.fr/item/VYURM_2020_12_3_a6/

[1] A. Neubrand, J. Rodel, “Gradient materials: an overview of a novel concept”, Zeitschrift für Metallkunde, 88:5 (1997), 358–371

[2] M. G. Bulygin, G. F. Kostin, N. N. Tikhonov, O. N. Dementyev, Yu. M. Kovalev, Sh. Sh. Yagafarov, “Structural Inhomogeneities Influence of Carbon-Carbon Composite Materials for Hypersonic Heat Shield of Aircraft on the Spreads in Ablating Forms”, Composite materials constructions, 2004, no. 3, 3–15 (in Russ.)

[3] L. M. Barker, “A Model for Stress Wave Propagation in Composite Materials”, J. Composite Materials, 5:2 (1971), 140–162 | DOI

[4] B. S. Holmes, F. K. Tsou, “steady shock waves in composite materials”, J. Appl Phys., 43:3 (1972), 957–961 | DOI

[5] C. D. Lundergan, D. S. Drumheller, “Propagation of Stress Waves in a Laminated Plate Composite”, Journal of Applied Physics, 42:2 (1971), 669–675 | DOI

[6] D. E. Munson, R. R. Boade, K. W. Schuler, “Stress-wave propagation in Al$_2$O$_3$-epoxy mixtures”, J. Appl. Phys., 49:9 (1978), 4797–4807 | DOI

[7] D. E. Munson, K. W. Schuler, “Steady wave analysis of wave propagation in laminates and mechanical mixtures”, Journal of Composite Materials, 5:3 (1971), 286–304 | DOI

[8] Y. Oved, G. E. Luttwak, Z. Rosenberg, “Shock wave propagation in layered composites”, J. Compos. Mater., 12:1 (1978), 84–96 | DOI

[9] L. Tsai, F. Yuan, V. Prakash, D. P. Dandekar, “Shock compression behavior of a S2-glass fiber reinforced polymer Composite”, J. Appl. Phys., 105:9 (2009), 093526-1–093526-11 | DOI

[10] A. I. Kitaygorodskiy, Molecular crystals, Nauka, M., 1971, 424 pp. (in Russ.)

[11] A. V. Bushman, V. E. Fortov, “Model equations of state”, Sov. Phys. Usp., 26:6 (1983), 465–496 | DOI | DOI

[12] V. N. Zharkov, V. A. Kalinin, Equations of state at high temperatures and pressures, Nauka, M., 1968, 311 pp.

[13] B. Olinger, P. M. Halleck, H. H. Cady, “The isothermal linear and volume compression of pentaerythritol tetranitrate (PETN) to 10 GPa (100 kbar) and the calculated shock compression”, J. Chem. Phys., 62:11 (1975), 4480–4483 | DOI

[14] P. I. Dorogokupets, T. S. Sokolova, B. S. Danilov, K. D. Litasov, “Near-Absolute Equations of State of Diamond, Ag, Al, Au, Cu, Mo, Nb, Pt, Ta, AND W FOR Quasi-Hydrostatic Conditions”, Geodynamics Tectonophysics, 3:2 (2012), 129–166 | DOI

[15] P. I. Dorogokupets, A. M. Dymshits, T. S. Sokolova, B. S. Danilov, K. D. Litasov, “The Equations of State of Forsterite, Wadsleyite, Ringwoodite, Akimotoite, MgSiO$_3$-Perovskite, and Postperovskite and Phase Diagram For The Mg$_2$SiO$_4$ System at Pressures of up to 130 GPa”, Russian Geology and Geophysics, 56:1–2 (2015), 172–189 | DOI

[16] P. I. Dorogokupets, A. R. Oganov, “Intrinsic Anharmonicity in Equations of State of Solids and Minerals”, Doklady Earth Sciences, 395:2 (2004), 238–241 | Zbl

[17] Dorogokupets, P. I., “Thermodynamic functions at zero pressure and their relation to equations of state of minerals”, American Mineralogist, 85:2 (2000), 329–337 | DOI

[18] P. I. Dorogokupets, I. K. Karpov, V. V. Lashkevich, “Thermal equation of state for minerals”, Zapiski Vsesoyuznogo mineralogicheskogo obshchestva, 1988, no. 3, 334–344 (in Russ.)

[19] I. P. Bazarov, Thermodynamics, Vysshaya shkola, M., 1991, 375 pp. (in Russ.)

[20] L. D. Landau, E. M. Lifshits, Statistical Physics, v. I, Nauka, M., 1976, 584 pp. | MR

[21] Yu. M. Kovalev, “Determination of Form of the Gruneisen Coefficient for Molecular Crystals”, Doklady Akademii nauk, 403:4 (2005), 475–477 (in Russ.) | Zbl

[22] Yu. M. Kovalev, “Gruneisen Function for Solid Explosives”, VANT. Ser.: Mat. Mod. Fiz. Proc., 2005, no. 2, 55–59 (in Russ.)

[23] Y. M. Kovalev, “Determination of the Temperature Dependence of the Isobaric Volumetric Expansion Coefficient for Certain Molecular Crystals of Nitro Compounds”, Journal of Engineering Physics and Thermophysics, 91:6 (2018), 1573–1582 | DOI

[24] P. Vinet, J. R. Smith, J. Ferrante, J. H. Rose, “A Universal Equation of State for Solids”, Journal of Physics C: Solid State Physics, 19:20, L467–L473 | DOI