Mots-clés : Debye approximation, Grüneisen coefficient, Mie-Grüneisen equation.
@article{VYURM_2020_12_3_a6,
author = {Yu. M. Kovalev},
title = {Equation of state for {S2} glass-fiber reinforced polymer composite},
journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matematika, mehanika, fizika},
pages = {48--55},
year = {2020},
volume = {12},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VYURM_2020_12_3_a6/}
}
TY - JOUR AU - Yu. M. Kovalev TI - Equation of state for S2 glass-fiber reinforced polymer composite JO - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika PY - 2020 SP - 48 EP - 55 VL - 12 IS - 3 UR - http://geodesic.mathdoc.fr/item/VYURM_2020_12_3_a6/ LA - ru ID - VYURM_2020_12_3_a6 ER -
%0 Journal Article %A Yu. M. Kovalev %T Equation of state for S2 glass-fiber reinforced polymer composite %J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika %D 2020 %P 48-55 %V 12 %N 3 %U http://geodesic.mathdoc.fr/item/VYURM_2020_12_3_a6/ %G ru %F VYURM_2020_12_3_a6
Yu. M. Kovalev. Equation of state for S2 glass-fiber reinforced polymer composite. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 12 (2020) no. 3, pp. 48-55. http://geodesic.mathdoc.fr/item/VYURM_2020_12_3_a6/
[1] A. Neubrand, J. Rodel, “Gradient materials: an overview of a novel concept”, Zeitschrift für Metallkunde, 88:5 (1997), 358–371
[2] M. G. Bulygin, G. F. Kostin, N. N. Tikhonov, O. N. Dementyev, Yu. M. Kovalev, Sh. Sh. Yagafarov, “Structural Inhomogeneities Influence of Carbon-Carbon Composite Materials for Hypersonic Heat Shield of Aircraft on the Spreads in Ablating Forms”, Composite materials constructions, 2004, no. 3, 3–15 (in Russ.)
[3] L. M. Barker, “A Model for Stress Wave Propagation in Composite Materials”, J. Composite Materials, 5:2 (1971), 140–162 | DOI
[4] B. S. Holmes, F. K. Tsou, “steady shock waves in composite materials”, J. Appl Phys., 43:3 (1972), 957–961 | DOI
[5] C. D. Lundergan, D. S. Drumheller, “Propagation of Stress Waves in a Laminated Plate Composite”, Journal of Applied Physics, 42:2 (1971), 669–675 | DOI
[6] D. E. Munson, R. R. Boade, K. W. Schuler, “Stress-wave propagation in Al$_2$O$_3$-epoxy mixtures”, J. Appl. Phys., 49:9 (1978), 4797–4807 | DOI
[7] D. E. Munson, K. W. Schuler, “Steady wave analysis of wave propagation in laminates and mechanical mixtures”, Journal of Composite Materials, 5:3 (1971), 286–304 | DOI
[8] Y. Oved, G. E. Luttwak, Z. Rosenberg, “Shock wave propagation in layered composites”, J. Compos. Mater., 12:1 (1978), 84–96 | DOI
[9] L. Tsai, F. Yuan, V. Prakash, D. P. Dandekar, “Shock compression behavior of a S2-glass fiber reinforced polymer Composite”, J. Appl. Phys., 105:9 (2009), 093526-1–093526-11 | DOI
[10] A. I. Kitaygorodskiy, Molecular crystals, Nauka, M., 1971, 424 pp. (in Russ.)
[11] A. V. Bushman, V. E. Fortov, “Model equations of state”, Sov. Phys. Usp., 26:6 (1983), 465–496 | DOI | DOI
[12] V. N. Zharkov, V. A. Kalinin, Equations of state at high temperatures and pressures, Nauka, M., 1968, 311 pp.
[13] B. Olinger, P. M. Halleck, H. H. Cady, “The isothermal linear and volume compression of pentaerythritol tetranitrate (PETN) to 10 GPa (100 kbar) and the calculated shock compression”, J. Chem. Phys., 62:11 (1975), 4480–4483 | DOI
[14] P. I. Dorogokupets, T. S. Sokolova, B. S. Danilov, K. D. Litasov, “Near-Absolute Equations of State of Diamond, Ag, Al, Au, Cu, Mo, Nb, Pt, Ta, AND W FOR Quasi-Hydrostatic Conditions”, Geodynamics Tectonophysics, 3:2 (2012), 129–166 | DOI
[15] P. I. Dorogokupets, A. M. Dymshits, T. S. Sokolova, B. S. Danilov, K. D. Litasov, “The Equations of State of Forsterite, Wadsleyite, Ringwoodite, Akimotoite, MgSiO$_3$-Perovskite, and Postperovskite and Phase Diagram For The Mg$_2$SiO$_4$ System at Pressures of up to 130 GPa”, Russian Geology and Geophysics, 56:1–2 (2015), 172–189 | DOI
[16] P. I. Dorogokupets, A. R. Oganov, “Intrinsic Anharmonicity in Equations of State of Solids and Minerals”, Doklady Earth Sciences, 395:2 (2004), 238–241 | Zbl
[17] Dorogokupets, P. I., “Thermodynamic functions at zero pressure and their relation to equations of state of minerals”, American Mineralogist, 85:2 (2000), 329–337 | DOI
[18] P. I. Dorogokupets, I. K. Karpov, V. V. Lashkevich, “Thermal equation of state for minerals”, Zapiski Vsesoyuznogo mineralogicheskogo obshchestva, 1988, no. 3, 334–344 (in Russ.)
[19] I. P. Bazarov, Thermodynamics, Vysshaya shkola, M., 1991, 375 pp. (in Russ.)
[20] L. D. Landau, E. M. Lifshits, Statistical Physics, v. I, Nauka, M., 1976, 584 pp. | MR
[21] Yu. M. Kovalev, “Determination of Form of the Gruneisen Coefficient for Molecular Crystals”, Doklady Akademii nauk, 403:4 (2005), 475–477 (in Russ.) | Zbl
[22] Yu. M. Kovalev, “Gruneisen Function for Solid Explosives”, VANT. Ser.: Mat. Mod. Fiz. Proc., 2005, no. 2, 55–59 (in Russ.)
[23] Y. M. Kovalev, “Determination of the Temperature Dependence of the Isobaric Volumetric Expansion Coefficient for Certain Molecular Crystals of Nitro Compounds”, Journal of Engineering Physics and Thermophysics, 91:6 (2018), 1573–1582 | DOI
[24] P. Vinet, J. R. Smith, J. Ferrante, J. H. Rose, “A Universal Equation of State for Solids”, Journal of Physics C: Solid State Physics, 19:20, L467–L473 | DOI