@article{VYURM_2020_12_3_a5,
author = {D. A. Tursunov and M. O. Orozov},
title = {Asymptotic solution of the perturbed first boundary value problem with a non-smooth coefficient},
journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matematika, mehanika, fizika},
pages = {41--47},
year = {2020},
volume = {12},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/VYURM_2020_12_3_a5/}
}
TY - JOUR AU - D. A. Tursunov AU - M. O. Orozov TI - Asymptotic solution of the perturbed first boundary value problem with a non-smooth coefficient JO - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika PY - 2020 SP - 41 EP - 47 VL - 12 IS - 3 UR - http://geodesic.mathdoc.fr/item/VYURM_2020_12_3_a5/ LA - en ID - VYURM_2020_12_3_a5 ER -
%0 Journal Article %A D. A. Tursunov %A M. O. Orozov %T Asymptotic solution of the perturbed first boundary value problem with a non-smooth coefficient %J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika %D 2020 %P 41-47 %V 12 %N 3 %U http://geodesic.mathdoc.fr/item/VYURM_2020_12_3_a5/ %G en %F VYURM_2020_12_3_a5
D. A. Tursunov; M. O. Orozov. Asymptotic solution of the perturbed first boundary value problem with a non-smooth coefficient. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 12 (2020) no. 3, pp. 41-47. http://geodesic.mathdoc.fr/item/VYURM_2020_12_3_a5/
[1] Gie Gung-Min, Jung Chang-Yeol, R. Temam, “Recent progresses in boundary layer theory”, Discrete Continuous Dynamical Systems A, 36:5 (2014), 2521–2583 | DOI | MR
[2] Il'in A. M., Asymptotic methods in analysis, Fizmatlit, M., 2009, 248 pp. (in Russ.)
[3] D. Gilbarg, N. S. Trudinger, Elliptic partial differential equations of second order, Grundlehren der Mathematischen Wissenschaften (Fundamental Principles of Mathematical Sciences), 224, Second edition, Springer-Verlag, Berlin, 1983, 513 pp. | MR | Zbl
[4] D. A. Tursunov, U. Z. Erkebaev, “Asymptotic expansion of the solution of the Dirichlet problem for a ring with a singularity on the boundary”, Tomsk State University Journal of Mathematics and Mechanics, 2016, no. 1 (39), 42–52 (in Russ.) | DOI
[5] D. A. Tursunov, U. Z. Erkebaev, “Asymptotic expansions of solutions to Dirichlet problem for elliptic equation with singularities”, Ufa Mathematical Journal, 8:1 (2015), 97–107 | DOI | MR
[6] D. A. Tursunov, “The generalized boundary function method for bisingular problems in a disk”, Trudy Inst. Mat. i Mekh. UrO RAN, 23, no. 2, 2017, 239–249 | DOI