Keywords: inverse problem, integral conditions
@article{VYURM_2020_12_3_a4,
author = {R. K. Tagiev and Sh. I. Maharramli},
title = {Variational formulation of an inverse problem for a parabolic equation with integral conditions},
journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matematika, mehanika, fizika},
pages = {34--40},
year = {2020},
volume = {12},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VYURM_2020_12_3_a4/}
}
TY - JOUR AU - R. K. Tagiev AU - Sh. I. Maharramli TI - Variational formulation of an inverse problem for a parabolic equation with integral conditions JO - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika PY - 2020 SP - 34 EP - 40 VL - 12 IS - 3 UR - http://geodesic.mathdoc.fr/item/VYURM_2020_12_3_a4/ LA - ru ID - VYURM_2020_12_3_a4 ER -
%0 Journal Article %A R. K. Tagiev %A Sh. I. Maharramli %T Variational formulation of an inverse problem for a parabolic equation with integral conditions %J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika %D 2020 %P 34-40 %V 12 %N 3 %U http://geodesic.mathdoc.fr/item/VYURM_2020_12_3_a4/ %G ru %F VYURM_2020_12_3_a4
R. K. Tagiev; Sh. I. Maharramli. Variational formulation of an inverse problem for a parabolic equation with integral conditions. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 12 (2020) no. 3, pp. 34-40. http://geodesic.mathdoc.fr/item/VYURM_2020_12_3_a4/
[1] Iskenderov A.D., “On variational formulations of multidimensional inverse problems of mathematical physics”, Sov. Math., Dokl., 29 (1984), 52–55 (in Russ.) | MR | MR | Zbl
[2] Alifanov O.A., Artyukhin E.A., Rumyantsev S.V., Extreme methods for solving ill-posed problems, Nauka Publ., M., 1988, 285 pp. (in Russ.) | MR
[3] Kabanikhin S.I., Dairbaeva G., “The inverse problem of finding the coefficient of the heat equation”, Proc. International Conference “Inverse Ill-posed Problems of Mathematical Physics, Dedicated to the 75th Anniversary of Academician M. M. Lavrentiev” (Russia, Novosibirsk, August 20–25, 2007), 1–5 (in Russ.)
[4] Kabanikhin S.I., Inverse and ill-posed problems, Sibirskoe Nauchnoe Izdatel'stvo Publ., Novosibirsk, 2009, 457 pp. (in Russ.)
[5] A.D. Iskenderov, R.K. Tagiyev, “Variational method solving the problem of identification of the coefficients of quasilinear parabolic problem”, The 7th International Conference «Inverse Problems: modelling and simulation», IMPS-2014 (May 26-31, 2014), 2014, 31
[6] Tagiev R.K., Kasumov R.A., “On the optimization formulation of the coefficient inverse problem for a parabolic equation with an additional integral condition”, Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika, 2017, no. 45, 49–59 | DOI
[7] Gabibov V.M., “Coefficient inverse problem of control type for a parabolic equation with an additional integral condition”, Vestnik Bakinskogo Universiteta. Ser. fiz.-matem. Nauk, 2017, no. 2, 80–91
[8] Ladyzhenskaya O.A., Solonnikov V.A., Ural'tseva N.N., Parabolic linear and quasilinear equations, Nauka Publ., M., 1967, 736 pp. (in Russ.) | MR
[9] Vasil'ev F.P., Methods for solving extreme problems, Nauka Publ., M., 1981, 400 pp.