@article{VYURM_2020_12_3_a2,
author = {B. I. Islomov and B. Z. Usmonov},
title = {Local boundary value problem for a class of third-order elliptic-hyperbolic type equation},
journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matematika, mehanika, fizika},
pages = {22--28},
year = {2020},
volume = {12},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VYURM_2020_12_3_a2/}
}
TY - JOUR AU - B. I. Islomov AU - B. Z. Usmonov TI - Local boundary value problem for a class of third-order elliptic-hyperbolic type equation JO - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika PY - 2020 SP - 22 EP - 28 VL - 12 IS - 3 UR - http://geodesic.mathdoc.fr/item/VYURM_2020_12_3_a2/ LA - ru ID - VYURM_2020_12_3_a2 ER -
%0 Journal Article %A B. I. Islomov %A B. Z. Usmonov %T Local boundary value problem for a class of third-order elliptic-hyperbolic type equation %J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika %D 2020 %P 22-28 %V 12 %N 3 %U http://geodesic.mathdoc.fr/item/VYURM_2020_12_3_a2/ %G ru %F VYURM_2020_12_3_a2
B. I. Islomov; B. Z. Usmonov. Local boundary value problem for a class of third-order elliptic-hyperbolic type equation. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 12 (2020) no. 3, pp. 22-28. http://geodesic.mathdoc.fr/item/VYURM_2020_12_3_a2/
[1] A. V. Bitsadze, M. S. Salakhitdinov, “To the theory of equations of mixed-composite type”, Sibirskiy matematicheskiy zhurnal, 2:1 (1961), 7–19 (in Russ.) | MR | Zbl
[2] M. S. Salakhitdinov, Equations of mixed-composite type, Fan Publ., Tashkent, 1974, 156 pp. (in Russ.) | MR
[3] T. D. Dzhuraev, Boundary value problems for equations of mixed and mixed-composite type, Fan Publ, Tashkent, 1979, 238 pp. (in Russ.)
[4] S.X. Chen, “Mixed type equations in gas dynamics”, Quarterly of applied mathematics, LXVIII:3 (2010), 487–511 | DOI | MR | Zbl
[5] A. I. Kozhanov, “A mixed problem for some classes of nonlinear third-order equations”, Mathematics of the USSR-Sbornik, 46:4 (1983), 507–525 | DOI | MR | Zbl
[6] T. D. Dzhuraev, M. Mamazhanov, “Well-posed formulation of boundary value problems for a class of third-order equations of parabolic-hyperbolic type”, Differ. Uravn., 19:1 (1983), 37–50 (in Russ.) | MR | Zbl
[7] K. B. Sabitov, G. Yu. Udalova, “Boundary value problem for mixed type equation of the third order with periodic conditions”, J. Samara State Tech. Univ., Ser. Phys. Math. Sci., 2013, no. 3 (32), 29–45 (in Russ.) | Zbl
[8] O. M. Dzhokhadze, “Influence of Lower Terms on the Well-Posedness of Characteristics Problems for Third-Order Hyperbolic Equations”, Mat. Zametki, 74:4 (2003), 517–528 | MR | Zbl
[9] O. S. Zikirov, “On Solvability Non-Local Boundary Vakue Problem for the Hyperbolic Equation of the Third Order”, Sibirskiy zhurnal chistoy i prikladnoy matematiki, 16:2 (2016), 16–25 (in Russ.) | MR | Zbl
[10] B.I. Islomov, B.Z. Usmonov, “Nonlocal boundary value problem for a third-order equation of elliptic-hyperbolic type”, Lobachevskii Journal of Mathematics, 41:1 (2020), 32–38 | DOI | MR | Zbl
[11] A. V. Bitsadze, Some classes of partial differential equations, Nauka, M., 1981, 448 pp. (in Russ.)