@article{VYURM_2020_12_3_a1,
author = {V. Ala and Kh. R. Mamedov},
title = {On basis property of root functions for a class of the second order differential operators},
journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matematika, mehanika, fizika},
pages = {15--21},
year = {2020},
volume = {12},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/VYURM_2020_12_3_a1/}
}
TY - JOUR AU - V. Ala AU - Kh. R. Mamedov TI - On basis property of root functions for a class of the second order differential operators JO - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika PY - 2020 SP - 15 EP - 21 VL - 12 IS - 3 UR - http://geodesic.mathdoc.fr/item/VYURM_2020_12_3_a1/ LA - en ID - VYURM_2020_12_3_a1 ER -
%0 Journal Article %A V. Ala %A Kh. R. Mamedov %T On basis property of root functions for a class of the second order differential operators %J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika %D 2020 %P 15-21 %V 12 %N 3 %U http://geodesic.mathdoc.fr/item/VYURM_2020_12_3_a1/ %G en %F VYURM_2020_12_3_a1
V. Ala; Kh. R. Mamedov. On basis property of root functions for a class of the second order differential operators. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 12 (2020) no. 3, pp. 15-21. http://geodesic.mathdoc.fr/item/VYURM_2020_12_3_a1/
[1] W. Aiping, S. Jiong, H. Xiaoling, Y. Siqin, “Completeness of Eigenfunctions of Sturm-Liouville Problems with Transmission Conditions”, Methods and Applications of Analysis, 16:3 (2009), 299–312 | DOI | MR | Zbl
[2] R. S. Anderssen, “The Effect of Discontinuities in Density and Shear Velocity on the Asymptotic Overtone Structure of Torsional Eigenfrequencies of the Earth”, Geophysical Journal of the Royal Astronomical Society, 50:2 (1977), 303–309 | DOI
[3] T. Ya. Azizov, I. S. Iokhvidov, Fundamentals of the Theory of Linear Operators in Spaces with an Indefinite Metric, Nauka, M., 1986, 352 pp. (in Russ.) | MR
[4] B. P. Belinskiy, J. P. Dauer, “On a regular Sturm-Liouville problem on a finite interval with the eigenvalue parameter appearing linearly in the boundary conditions”, Spectral Theoryand Computational Methods of Sturm-Liouville Problem, eds. Hinton D., Schaefer P.W., Marcel Dekker, New York, 1997, 183–196 | MR | Zbl
[5] P. A. Binding, P. J. Browne, K. Siddighi, “Sturm-Liouville Problems with Eigenparameter Dependent Conditions”, Proc. of the Edinburgh Mathematical Society, 37:1 (1994), 57–72 | DOI | MR | Zbl
[6] C. T. Fulton, “Two-Point Boundary Value Problems with Eigenvalue Parameter Contained in the Boundary Conditions”, Proc. of the Royal Society of Edinburgh Section A: Mathematics, 77:3-4 (1977), 293–308 | DOI | MR | Zbl
[7] V.Y. Gulmamedov, Kh.R. Mamedov, “On Basis Property for a Boundary-Value Problem with a Spectral Parameter in the Boundary Condition”, Journal of Arts and Sciences, 2006, no. 5, 9–18 | MR
[8] D.B. Hinton, “An Expansion Theorem for an Eigenvalue Problem with Eigenvalue Parameter in the Boundary Condition”, The Quarterly Journal of Mathematics, 30:1 (1979), 33–42 | DOI | MR | Zbl
[9] N. Y. Kapustin, E. I. Moisseev, “A Remark on the Convergence Problem for Spectral Expansions Corresponding to a Classiscal Problem with Spectral Parameter in the Boundary Condition”, Differential Equations, 37:12 (2001), 1677–1683 | DOI | MR | Zbl
[10] M. Kobayashi, “Eigenvalues of Discontinuous Sturm-Liouville Problem with Symmetric Potentials”, Computers Mathematics with Applications, 18:4 (1989), 357–364 | DOI | MR | Zbl
[11] Kh.R. Mamedov, “On One Boundary Value Problem with Parameter in the Boundary Conditions”, Spectral Theory of Operators and Its Applications, 11 (1997), 117–121 (in Russ.) | MR
[12] Kh. R. Mamedov, “On a Basic Problem for a Second Order Differential Equation With a Discontinuous Coefficient and a Spectral Parameter in the Boundary Conditions”, Proc. 7th international conference on geometry, integrability and quantization (June 2-10, 2005, Sts. Constantine and Elena, Bulgaria, Sofia), Bulgarian Academy of Sciences, 2006, 218–225 | DOI | Zbl
[13] E. M. Russakovskij, “Operator Treatment of Boundary Problems with Spectral Parameters Entering via Polynomials in the Boundary Conditions”, Functional Analysis and Its Applications, 9:4 (1975), 358–359 | DOI
[14] A. Schneider, “A Note on Eigenvalue Problems with Eigenvalue Parameter in the Boundary Conditions”, Mathematische Zeitschrift, 136:2 (1974), 163–167 | DOI | MR | Zbl
[15] A. A. Shkalikov, “Boundary Value Problems for Ordinary Differential Equations with a Spectral Parameter in the Boundary Conditions”, Journal of Soviet Mathematics, 33:6 (1986), 1311–1342 | DOI | Zbl
[16] S. Caliskan, A. Bayramov, Z. Oer, S. Uslu, “Eigenvalues and Eigenfunctions of Discontinuous Two-Point Boundary Value Problems with an Eigenparameter in the Boundary Condiiton”, Rocky Mountain Journal of Mathematics, 43:6 (2013), 1871–1892 | DOI | MR | Zbl
[17] A. N. Tikhonov, A. A. Samarskii, Equations of Mathematical Physics, Pergamon, Oxford–New York, 1963, 765 pp. | MR | Zbl
[18] J. Walter, “Regular Eigenvalue Problems with Eigenvalue Parameter in the Boundary Conditions”, Mathematische Zeitschrift, 133:4 (1973), 301–312 | DOI | MR | Zbl