Mots-clés : tabulation.
@article{VYURM_2020_12_3_a0,
author = {A. A. Akimova},
title = {Tabulation of prime projections of links in the thickened surface of genus 2 with no more than 4 crossings},
journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matematika, mehanika, fizika},
pages = {5--14},
year = {2020},
volume = {12},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/VYURM_2020_12_3_a0/}
}
TY - JOUR AU - A. A. Akimova TI - Tabulation of prime projections of links in the thickened surface of genus 2 with no more than 4 crossings JO - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika PY - 2020 SP - 5 EP - 14 VL - 12 IS - 3 UR - http://geodesic.mathdoc.fr/item/VYURM_2020_12_3_a0/ LA - en ID - VYURM_2020_12_3_a0 ER -
%0 Journal Article %A A. A. Akimova %T Tabulation of prime projections of links in the thickened surface of genus 2 with no more than 4 crossings %J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika %D 2020 %P 5-14 %V 12 %N 3 %U http://geodesic.mathdoc.fr/item/VYURM_2020_12_3_a0/ %G en %F VYURM_2020_12_3_a0
A. A. Akimova. Tabulation of prime projections of links in the thickened surface of genus 2 with no more than 4 crossings. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 12 (2020) no. 3, pp. 5-14. http://geodesic.mathdoc.fr/item/VYURM_2020_12_3_a0/
[1] J. Hoste, M. Thistlethwaite, J. Weeks, “The first 1,701,936 knots”, The Mathematical Intelligencer, 20:4 (1998), 33–48 | DOI | MR | Zbl
[2] D. Rolfsen, Knots and Links, Publish or Perish, Berkeley, CA, 1976 | MR | Zbl
[3] D. Bar-Natan, The Knot Atlas, http://katlas.org/wiki/Main_Page
[4] B. Gabrovšek, M. Mroczkowski, “Knots in the Solid Torus up to 6 Crossings”, Journal of Knot Theory and Its Ramifications, 21:11 (2012), 1250106-1–1250106-43 | DOI | MR
[5] S. V. Matveev, L. R. Nabeeva, “Tabulating knots in the thickened Klein bottle”, Siberian Mathematical Journal, 57:3 (2016), 542–548 | DOI | MR | Zbl
[6] B. Gabrovšek, “Tabulation of Prime Knots in Lens Spaces”, Mediterranean Journal of Mathematics, 14:88 (2017) | DOI | Zbl
[7] J. Green, A table of virtual knots, https://www.math.toronto.edu/drorbn/Students/GreenJ/
[8] E. Stenlund, Classification of virtual knots, http://evertstenlund.se/knots/Virtual
[9] A.A. Akimova, S.V. Matveev, “Classification of Genus 1 Virtual Knots Having at most Five ClassicalCrossings”, Journal of Knot Theory and Its Ramifications, 23:6 (2014), 1450031-1–1450031-19 | DOI | MR
[10] A.A. Akimova, “Classification of prime knots in the thickened surface of genus 2 having diagrams with at most 4 crossings”, Journal of Computational and Engineering Mathematics, 7:1 (2020), 32–46 | DOI | MR
[11] Yu. V. Drobotukhina, “Classification of links in RP3 with at most six crossings”, Advances in Soviet Mathematics, 18:1 (1994), 87–121 | MR | MR | Zbl | Zbl
[12] A. A. Akimova, S. V. Matveev, V. V. Tarkaev, “Classification of Links of Small Complexity in the Thickened Torus”, Proceedings of the Steklov Institute of Mathematics, 303, Suppl. 1, 12–24 | DOI | MR
[13] P. Zinn-Justin, J.B. Zuber, “Matrix Integrals and the Generation and Counting of Virtual Tangles and Links”, Journal of Knot Theory and Its Ramifications, 13:3 (2004), 325–355 | DOI | MR | Zbl
[14] P. Zinn-Justin, Alternating Virtual Link Database, https://www.lpthe.jussieu.fr/pzinn/virtlinks/
[15] A. A. Akimova, “Classification of prime projections of knots in the thickened torus of genus 2 with at most 4 crossings”, Bulletin of the South Ural State University SeriesMathematics. Mechanics. Physics, 12:1 (2020), 5–13 | DOI | MR