@article{VYURM_2020_12_2_a2,
author = {V. Sh. Roitenberg},
title = {On the structure of the space of homogeneous polynomial differential equations of a circle},
journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matematika, mehanika, fizika},
pages = {21--30},
year = {2020},
volume = {12},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VYURM_2020_12_2_a2/}
}
TY - JOUR AU - V. Sh. Roitenberg TI - On the structure of the space of homogeneous polynomial differential equations of a circle JO - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika PY - 2020 SP - 21 EP - 30 VL - 12 IS - 2 UR - http://geodesic.mathdoc.fr/item/VYURM_2020_12_2_a2/ LA - ru ID - VYURM_2020_12_2_a2 ER -
%0 Journal Article %A V. Sh. Roitenberg %T On the structure of the space of homogeneous polynomial differential equations of a circle %J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika %D 2020 %P 21-30 %V 12 %N 2 %U http://geodesic.mathdoc.fr/item/VYURM_2020_12_2_a2/ %G ru %F VYURM_2020_12_2_a2
V. Sh. Roitenberg. On the structure of the space of homogeneous polynomial differential equations of a circle. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 12 (2020) no. 2, pp. 21-30. http://geodesic.mathdoc.fr/item/VYURM_2020_12_2_a2/
[1] J. Palis, C.C. Pugh, “Fifty problems in dynamical systems”, Dynamical Systems (Warwick, 1974), Lecture Notes in Mathematics, 468, eds. Manning A., Springer, Berlin–Heidelberg, 1975, 345–353 | DOI
[2] S. Newhouse, M.M. Peixoto, “There is a simple arc joining any two Morse-Smale flows”, Trois études en dynamique qualitative, Astérisque, 31, Soc. Math. France, Paris, 1976, 15–41 http://www.numdam.org/item/AST_1976__31__15_0/
[3] Sh. Matsumoto, “There are two isotopic Morse–Smale diffeomorphisms which cannot be joined by simple arcs”, Inventiones mathematicae, 51:1 (1979), 1–7 | DOI
[4] E. V. Nozdrinova, “Rotation number as a complete topological invariant of a simple isotopic class of rough transformations of a circle”, Russian Journal of Nonlinear Dynamics, 14:4 (2018), 543–551 | DOI
[5] C. Gutiérrez, W. De Melo, “The connected components of Morse-Smale vector fields on two-manifolds”, Lecture Notes in Mathematics, 597, Springer, 1977, 230–251
[6] Roytenberg V.Sh., “O the connected components of Morse-Smale vector fields on two-manifolds”, Trudy vtorykh Kolmogorovskikh chteniy, YaGPU Publ., Yaroslavl', 2004, 352–358 (in Russ.)
[7] Roytenberg V.Sh., “On connected components of the set of polynomial vector fields, structurally stable in a neighborhood of the equator of the Poincare sphere”, The Bulletin of the Adyghe State University, the series “Natural-Mathematical and Technical Sciences”, 2015, no. 4, 22–29 (in Russ.)
[8] Roitenberg V.Sh., “Structural Stability of Planar Vector Fields that are Invariant Under the Rotation Group”, Belgorod State University Scientific Bulletin. Mathematics. Physics, 50:4 (2018), 398–404 (in Russ.) | DOI
[9] Andronov A.A., Leontovich E.A., Gordon I.I., Mayer A.G., The theory of bifurcations of dynamical systems on the plane, Nauka Publ., M., 1967, 487 pp. (in Russ.)
[10] Hirsch M.W., Differencial topology, Springer-Verlag, 1976, 222 pp. | DOI