Mots-clés : Hölder conditions.
@article{VYURM_2020_12_2_a0,
author = {V. L. Dilman},
title = {Linear functional equations in the {H\"older} class functions on a simple smooth curve},
journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matematika, mehanika, fizika},
pages = {5--12},
year = {2020},
volume = {12},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VYURM_2020_12_2_a0/}
}
TY - JOUR AU - V. L. Dilman TI - Linear functional equations in the Hölder class functions on a simple smooth curve JO - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika PY - 2020 SP - 5 EP - 12 VL - 12 IS - 2 UR - http://geodesic.mathdoc.fr/item/VYURM_2020_12_2_a0/ LA - ru ID - VYURM_2020_12_2_a0 ER -
%0 Journal Article %A V. L. Dilman %T Linear functional equations in the Hölder class functions on a simple smooth curve %J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika %D 2020 %P 5-12 %V 12 %N 2 %U http://geodesic.mathdoc.fr/item/VYURM_2020_12_2_a0/ %G ru %F VYURM_2020_12_2_a0
V. L. Dilman. Linear functional equations in the Hölder class functions on a simple smooth curve. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 12 (2020) no. 2, pp. 5-12. http://geodesic.mathdoc.fr/item/VYURM_2020_12_2_a0/
[1] T. Carleman, “Über die Abelsche Integralgleichung mit konstanten Integrationsgrenzen”, Mathematische Zeitschrift, 15 (1922), 111–120 | DOI
[2] Samko S.G., Kilbas A.A., Marichev O.I., Fractional integrals and derivatives and some of their applications, Nauka i tekhnika Publ., Minsk, 1987, 687 pp. (in Russ.)
[3] Chibrikova L.I., Pleshchinskiĭ N.B., “Integral equations with generalized logarithmic and power kernels”, Soviet Mathematics (Izvestiya VUZ. Matematika), 20:6 (1976), 80–92
[4] G.S. Litvinchuk, Solvability Theory of Boundary Value Problems and Singular Integral Equations with Shift, Springer Science+Business Media, 2012, 378 pp.
[5] V.G. Kravchenko, G.S. Litvinchuk, Introduction to the Theory of Singular Integral Operators with Shift, Springer Science+Business Media, 2014, 308 pp.
[6] Karlovich Yu.I., Kravchenko V.G., Litvinchuk G.S., “Noether's theory of singular integral operators with shift”, Soviet Mathematics (Izvestiya VUZ. Matematika), 27:4 (1983), 1–34
[7] Dil'man V. L., Chibrikova L.I., “Solutions of an integral equation with generalized logarithmic kernel in $L_p$, $p>1$”, Soviet Mathematics (Izvestiya VUZ. Matematika), 30:4 (1986), 33–46
[8] M. Kuczma, An introduction to the theory of functional equations and inequalities, Panstwowe Wydawnictwo Naukowe (Polish Scientific Publishers) and Uniwersytet Slaski, Warszawa-Krakow-Katowice, 1985
[9] Kravchenko V.G. One functional equation with displacement in the space of continuous functions, Mathematical notes of the Academy of Sciences of the USSR, 22:8 (1977), 660–665 | DOI
[10] Karlovich Yu.I., Tursunkulov B., “Singular integral operators with shift in a generalized Hölder space”, Soviet Mathematics (Izvestiya VUZ. Matematika), 28:3 (1984), 97–101
[11] M. Kuczma, Functional equations in a single variable, PWN-Polish Scientific Publishers, Warszawa, 1968, 383 pp.