Linear functional equations in the Hölder class functions on a simple smooth curve
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 12 (2020) no. 2, pp. 5-12 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The article describes linear functional equations on simple smooth curves with a shift function having a non-zero derivative satisfying the Hölder condition, and fixed points only at the ends of the curve. The objective of the article is to find the conditions of the existence and uniqueness of the solution of such equations in the Hölder class functions with the coefficient and the right-hand side satisfying the Hölder conditions. These conditions are obtained depending on the values of the equation coefficient at the ends of the curve. Various specifics at the ends of the curve are considered. The indicators of the Hölder solutions are determined. The possibilities of applying linear functional equations to the study and solution of singular integral equations with logarithmic singularities are shown.
Keywords: singular integral equations with a shift, linear functional equations with a single variable
Mots-clés : Hölder conditions.
@article{VYURM_2020_12_2_a0,
     author = {V. L. Dilman},
     title = {Linear functional equations in the {H\"older} class functions on a simple smooth curve},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matematika, mehanika, fizika},
     pages = {5--12},
     year = {2020},
     volume = {12},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VYURM_2020_12_2_a0/}
}
TY  - JOUR
AU  - V. L. Dilman
TI  - Linear functional equations in the Hölder class functions on a simple smooth curve
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
PY  - 2020
SP  - 5
EP  - 12
VL  - 12
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VYURM_2020_12_2_a0/
LA  - ru
ID  - VYURM_2020_12_2_a0
ER  - 
%0 Journal Article
%A V. L. Dilman
%T Linear functional equations in the Hölder class functions on a simple smooth curve
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
%D 2020
%P 5-12
%V 12
%N 2
%U http://geodesic.mathdoc.fr/item/VYURM_2020_12_2_a0/
%G ru
%F VYURM_2020_12_2_a0
V. L. Dilman. Linear functional equations in the Hölder class functions on a simple smooth curve. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 12 (2020) no. 2, pp. 5-12. http://geodesic.mathdoc.fr/item/VYURM_2020_12_2_a0/

[1] T. Carleman, “Über die Abelsche Integralgleichung mit konstanten Integrationsgrenzen”, Mathematische Zeitschrift, 15 (1922), 111–120 | DOI

[2] Samko S.G., Kilbas A.A., Marichev O.I., Fractional integrals and derivatives and some of their applications, Nauka i tekhnika Publ., Minsk, 1987, 687 pp. (in Russ.)

[3] Chibrikova L.I., Pleshchinskiĭ N.B., “Integral equations with generalized logarithmic and power kernels”, Soviet Mathematics (Izvestiya VUZ. Matematika), 20:6 (1976), 80–92

[4] G.S. Litvinchuk, Solvability Theory of Boundary Value Problems and Singular Integral Equations with Shift, Springer Science+Business Media, 2012, 378 pp.

[5] V.G. Kravchenko, G.S. Litvinchuk, Introduction to the Theory of Singular Integral Operators with Shift, Springer Science+Business Media, 2014, 308 pp.

[6] Karlovich Yu.I., Kravchenko V.G., Litvinchuk G.S., “Noether's theory of singular integral operators with shift”, Soviet Mathematics (Izvestiya VUZ. Matematika), 27:4 (1983), 1–34

[7] Dil'man V. L., Chibrikova L.I., “Solutions of an integral equation with generalized logarithmic kernel in $L_p$, $p>1$”, Soviet Mathematics (Izvestiya VUZ. Matematika), 30:4 (1986), 33–46

[8] M. Kuczma, An introduction to the theory of functional equations and inequalities, Panstwowe Wydawnictwo Naukowe (Polish Scientific Publishers) and Uniwersytet Slaski, Warszawa-Krakow-Katowice, 1985

[9] Kravchenko V.G. One functional equation with displacement in the space of continuous functions, Mathematical notes of the Academy of Sciences of the USSR, 22:8 (1977), 660–665 | DOI

[10] Karlovich Yu.I., Tursunkulov B., “Singular integral operators with shift in a generalized Hölder space”, Soviet Mathematics (Izvestiya VUZ. Matematika), 28:3 (1984), 97–101

[11] M. Kuczma, Functional equations in a single variable, PWN-Polish Scientific Publishers, Warszawa, 1968, 383 pp.