Mots-clés : identification.
@article{VYURM_2020_12_1_a5,
author = {A. V. Khokhlov},
title = {Exact solution of the boundary value problem for strain and stress fields in a thick tube made of physically non-linear elasto-viscoplastic material under given internal and external pressures},
journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matematika, mehanika, fizika},
pages = {44--54},
year = {2020},
volume = {12},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VYURM_2020_12_1_a5/}
}
TY - JOUR AU - A. V. Khokhlov TI - Exact solution of the boundary value problem for strain and stress fields in a thick tube made of physically non-linear elasto-viscoplastic material under given internal and external pressures JO - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika PY - 2020 SP - 44 EP - 54 VL - 12 IS - 1 UR - http://geodesic.mathdoc.fr/item/VYURM_2020_12_1_a5/ LA - ru ID - VYURM_2020_12_1_a5 ER -
%0 Journal Article %A A. V. Khokhlov %T Exact solution of the boundary value problem for strain and stress fields in a thick tube made of physically non-linear elasto-viscoplastic material under given internal and external pressures %J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika %D 2020 %P 44-54 %V 12 %N 1 %U http://geodesic.mathdoc.fr/item/VYURM_2020_12_1_a5/ %G ru %F VYURM_2020_12_1_a5
A. V. Khokhlov. Exact solution of the boundary value problem for strain and stress fields in a thick tube made of physically non-linear elasto-viscoplastic material under given internal and external pressures. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 12 (2020) no. 1, pp. 44-54. http://geodesic.mathdoc.fr/item/VYURM_2020_12_1_a5/
[1] Khokhlov A.V., “Asymptotic behavior of creep curves in the Rabotnov nonlinear heredity theory under piecewise constant loadings and memory decay conditions”, Moscow University Mechanics Bulletin, 72:5 (2017), 103–107 | DOI
[2] Khokhlov A.V., “Analysis of Creep Curves General Properties under Step Loading Generated by the Rabotnov Nonlinear Relation for Viscoelastic Plastic Materials”, Herald of the Bauman Moscow State Technical University. Series Natural Sciences, 2017, no. 3(72), 93–123 (in Russ.) | DOI
[3] Khokhlov A.V., “On the Ability of the Rabotnov Non-linear Relation for Hereditary Materials to Simulate Stress-strain Curves with a Decreasing Segment”, Problemy prochnosti i plastichnosti, 80:4 (2018), 477–493 (in Russ.) | DOI
[4] Khokhlov A.V., “Analysis of properties of ramp stress relaxation curves produced by the Rabotnov non-linear hereditary theory”, Mechanics of Composite Materials, 54:4 (2018), 473–486 | DOI
[5] Khokhlov A.V., “Simulation of Hydrostatic Pressure Influence on Creep Curves and Poisson's Ratio of Rheonomic Materials under Tension using the Rabotnov Non-Linear Hereditary Relation”, Mekhanika kompozitsionnykh materialov i konstruktsii, 24:3 (2018), 407–436 (in Russ.) | DOI
[6] Khokhlov A.V., “Properties of Stress-strain Curves Family Generated by the Rabotnov Non-linear Relation for Viscoelastic Materials”, Izvestiya Rossiyskoy Akademii Nauk. Mekhanika tverdogo tela, 2019, no. 2, 29–47
[7] Khokhlov A.V., “General Properties of the Creep Curves for Volumetric, Axial and Lateral Strain Generated by the Rabotnov Non-linear Viscoelasticity Relation under Uni-axial Loadings”, Problemy prochnosti i plastichnosti, 81:2 (2019), 146–164 | DOI
[8] Rabotnov Yu.N., “Equilibrium of Elastic Medium with Heredity”, Prikladnaya matematika i mekhanika, 12:1, 53–62 (in Russ.)
[9] Rabotnov Yu.N., Creep Problems in Structural Members, Nauka Publ., M., 1966, 752 pp. (in Russ.)
[10] Dergunov N.N., Papernik L.Kh., Rabotnov Yu.N., “Analysis of behavior of graphite on the basis of nonlinear heredity theory”, Journal of Applied Mechanics and Technical Physics, 12:2 (1971), 235–240 | DOI
[11] Rabotnov Yu.N., Papernik L.K., Stepanychev Y.I., “Application of the nonlinear theory of heredity to the description of time effects in polymeric materials”, Polimer mechanics, 7:1 (1971), 63–73 | DOI
[12] Rabotnov Yu.N., Papernik L.Kh., Stepanychev E.I., “Description of creep of composition materials under tension and compression”, Polymer Mechanics, 9 (1973), 690–695 | DOI
[13] Rabotnov Yu.N., Elements of hereditary solid mechanics, Mir Publishers, M., 1980, 387 pp.
[14] Y.C. Fung, “Stress-strain-history relations of soft tissues in simple elongation”, Biomechanics: Its Foundations and Objectives, eds. Y.C. Fung, N. Perrone, M. Anliker, Prentice Hall, 1972, 181–208
[15] Y.C. Fung, Biomechanics. Mechanical Properties of Living Tissues, Springer, N.Y., 1993, 568 pp. | DOI
[16] J.R. Funk, G.W. Hall, J.R. Crandall, W.D. Pilkey, “Linear and Quasi-Linear Viscoelastic Characterization of Ankle Ligaments”, Journal of Biomechanical Engineering, 122:1 (2000), 15–22 | DOI
[17] J.J. Sarver, P.S. Robinson, D.M. Elliott, “Methods for Quasi-Linear Viscoelastic Modeling of Soft Tissue: Application to Incremental Stress-Relaxation Experiments”, Journal of Biomechanical Engineering, 125:5 (2003), 754–758 | DOI
[18] S.D. Abramowitch, S.L.-Y. Woo, “An Improved Method to Analyze the Stress Relaxation of Ligaments Following a Finite Ramp Time Based on the Quasi-Linear Viscoelastic Theory”, Journal of Biomechanical Engineering, 126:1 (2004), 92–97 | DOI
[19] A. Nekouzadeh, K.M. Pryse, E.L. Elson, G.M. Genin, “A simplified approach to quasi-linear viscoelastic modeling”, Journal of Biomechanics, 40:14 (2007), 3070–3078 | DOI
[20] L.E. DeFrate, G. Li, “The prediction of stress-relaxation of ligaments and tendons using the quasi-linear viscoelastic model”, Biomechanics and Modeling in Mechanobiology, 6:4 (2007), 245–251 | DOI
[21] S.E. Duenwald, R. Vanderby Jr, R.S. Lakes, “Constitutive equations for ligament and other soft tissue: evaluation by experiment”, Acta Mechanica, 205 (2009), 23–33 | DOI
[22] R.S. Lakes, Viscoelastic Materials, Cambridge Univ. Press, Cambridge, 2009, 462 pp.
[23] R. De Pascalis, I.D. Abrahams, W.J. Parnell, “On nonlinear viscoelastic deformations: a reappraisal of Fung's quasi-linear viscoelastic model”, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 470:2166 (2014), 20140058 | DOI
[24] Lomakin V.A., Koltunov M.A., “Simulation of the deformation processes of nonlinear viscoelastic media”, Polymer Mechanics, 3:2 (1967), 147–150 | DOI
[25] Suvorova Yu.V., Alekseeva S.I., “Nonlinear model of an isotropic hereditary medium in state of complex stress”, Mech Compos Mater., 29:5 (1994), 443–447 | DOI
[26] Suvorova Yu.V., “Yu.N. Rabotnov's nonlinear hereditary-type equation and its applications”, Mechanics of Solids, 39:1 (2004), 132–138
[27] Alexeeva S.I., Fronya M.A., Viktorova I.V., “Analysis of viscoelastic properties of polymer based composites with carbon nanofillers”, Composites and nanostructures, 2011, no. 2, 28–39
[28] Khokhlov A.V., “Analysis of Creep Curves Produced by the Linear Heredity Theory under Cyclic Stepwise Loadings”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki (J. Samara State Tech. Univ., Ser. Phys. Math. Sci.), 21:2 (2017), 326–361 (in Russ.) | DOI
[29] Khokhlov A.V., “Two-Sided Estimates for the Relaxation Function of the Linear Theory of Heredity via the Relaxation Curves during the Ramp-Deformation and the Methodology of Identification”, Mechanics of Solids, 53:3 (2018), 307–328 | DOI
[30] Khokhlov A.V., “Applicability Indicators of the Linear Viscoelasticity Theory using Creep Curves under Tensile Load Combined with Constant Hydrostatic Pressure”, Mekhanika kompozitsionnykh materialov i konstruktsii, 25:2 (2019), 259–280 (in Russ.) | DOI
[31] Nadai A.L., Theory of flow and fracture of solids, v. 1, McGraw-Hill, New York, 1950, 572 pp.
[32] Il'yushin A.A., Ogibalov P.M., Elasticplastic Deformations of Hollow Cylinders, Izd-vo MGU Publ., M., 1960, 227 pp. (in Russ.)
[33] Malinin N.N., Applied Theory of Plasticity and Creep, Mashinostroenie Publ., M., 1968, 400 pp. (in Russ.)
[34] Khokhlov A.V., “Fracture criteria under creep with strain history taken into account, and longterm strength modeling”, Mechanics of Solids, 44:4 (2009), 596–607 | DOI