@article{VYURM_2020_12_1_a4,
author = {V. G. Sharmin and D. V. Sharmin},
title = {Studying global properties of a closed non-regular hypersurface with a bijective {Gaussian} mapping using the level function},
journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matematika, mehanika, fizika},
pages = {37--43},
year = {2020},
volume = {12},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VYURM_2020_12_1_a4/}
}
TY - JOUR AU - V. G. Sharmin AU - D. V. Sharmin TI - Studying global properties of a closed non-regular hypersurface with a bijective Gaussian mapping using the level function JO - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika PY - 2020 SP - 37 EP - 43 VL - 12 IS - 1 UR - http://geodesic.mathdoc.fr/item/VYURM_2020_12_1_a4/ LA - ru ID - VYURM_2020_12_1_a4 ER -
%0 Journal Article %A V. G. Sharmin %A D. V. Sharmin %T Studying global properties of a closed non-regular hypersurface with a bijective Gaussian mapping using the level function %J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika %D 2020 %P 37-43 %V 12 %N 1 %U http://geodesic.mathdoc.fr/item/VYURM_2020_12_1_a4/ %G ru %F VYURM_2020_12_1_a4
V. G. Sharmin; D. V. Sharmin. Studying global properties of a closed non-regular hypersurface with a bijective Gaussian mapping using the level function. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 12 (2020) no. 1, pp. 37-43. http://geodesic.mathdoc.fr/item/VYURM_2020_12_1_a4/
[1] C. Baba-Hamed, M. Bekkar, “On the Gauss Map of Surfaces of Revolution in the Three-Dimensional Minkowski Space”, Tsukuba J. Math., 36:2 (2013), 193–215 | DOI
[2] V. Milousheva, N.C. Turgay, “Quasi-Minimal Lorentz Surfaces with Pointwise 1-Type Gauss Map in Pseudo-Euclidean 4-space”, Journal of Geometry and Physics, 106 (2016), 171–183 | DOI
[3] U. Dursun, G.G. Arsan, “Surfaces in the Euclidean Space $E^4$ with Pointwise 1-Type Gauss Map”, Hacet. J. Math. Stat., 40:5 (2011), 617–625
[4] Verner A.L., “Cones with a Oneto-one Spherical Mapping”, Uchenye zapiski Leningradskogo gosudarstvennogo pedagogicheskogo instituta im. A. I. Gertsena, 328 (1967), 44–75 (in Russ.)
[5] Dudkin A.A., “Closed Non-convex Surfaces with Bijective Spherical Mapping, Nested in $E^3$”, Sovremennaya geometriya, 1981, 19–39 (in Russ.)
[6] Sharmin V.G., “Closed non-convex hypersurfaces with bijective spherical mapping in $E^4$”, Voprosy global'noy i rimanovoy geometrii, 1983, 92–96 (in Russ.)
[7] Bakel'man I.Ya., Verner A.L,, Kantor B.E., Introduction to differential geometry “in general”, Nauka Publ., M., 1973, 440 pp. (in Russ.)
[8] Arnol'd V.I., Ordinary differential equations, Nauka Publ., M., 1975, 239 pp. (in Russ.)
[9] Hirsch M.W., Differencial topology, Springer-Verlag, 1976, 222 pp. | DOI