Studying global properties of a closed non-regular hypersurface with a bijective Gaussian mapping using the level function
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 12 (2020) no. 1, pp. 37-43 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The structure of closed and non-closed regular hypersurfaces with an injective Gaussian mapping is thoroughly studied. When solving some problems of differential geometry, the desired hypersurface with a bijective Gaussian mapping may prove to be non-regular. In this paper, we study global properties of non-regular closed hypersurfaces in four-dimensional Euclidean space. A singular set of these surfaces is the sum total of closed oriented two-dimensional manifolds. The paper uses the Morse theory, the properties of the polar transformation with respect to the hypersphere, the Gauss–Bonnet theorem, the methods of the classical differential geometry of hypersurfaces and surfaces, the codimension of which is greater than 1. It is proved that under certain conditions the components of the singular set of the hypersurfaces under consideration can be only tors and spheres. In this case, the convex and saddle components of the regularity are tangent relative of each other along the sphere. It is found that a closed non-regular hypersurface with “cut off” borders and with bijective Gaussian mapping consists of two locally convex components homeomorphic to a three-dimensional ball, and one saddle component homeomorphic to the topological product of a two-dimensional sphere on the closed interval. The article provides examples of closed non-convex hypersurfaces with a bijective Gaussian mapping.
Keywords: Euclidean space, Gaussian mapping, non-convex closed non-regular hypersurface, Euler characteristic, level function.
@article{VYURM_2020_12_1_a4,
     author = {V. G. Sharmin and D. V. Sharmin},
     title = {Studying global properties of a closed non-regular hypersurface with a bijective {Gaussian} mapping using the level function},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matematika, mehanika, fizika},
     pages = {37--43},
     year = {2020},
     volume = {12},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VYURM_2020_12_1_a4/}
}
TY  - JOUR
AU  - V. G. Sharmin
AU  - D. V. Sharmin
TI  - Studying global properties of a closed non-regular hypersurface with a bijective Gaussian mapping using the level function
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
PY  - 2020
SP  - 37
EP  - 43
VL  - 12
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VYURM_2020_12_1_a4/
LA  - ru
ID  - VYURM_2020_12_1_a4
ER  - 
%0 Journal Article
%A V. G. Sharmin
%A D. V. Sharmin
%T Studying global properties of a closed non-regular hypersurface with a bijective Gaussian mapping using the level function
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
%D 2020
%P 37-43
%V 12
%N 1
%U http://geodesic.mathdoc.fr/item/VYURM_2020_12_1_a4/
%G ru
%F VYURM_2020_12_1_a4
V. G. Sharmin; D. V. Sharmin. Studying global properties of a closed non-regular hypersurface with a bijective Gaussian mapping using the level function. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 12 (2020) no. 1, pp. 37-43. http://geodesic.mathdoc.fr/item/VYURM_2020_12_1_a4/

[1] C. Baba-Hamed, M. Bekkar, “On the Gauss Map of Surfaces of Revolution in the Three-Dimensional Minkowski Space”, Tsukuba J. Math., 36:2 (2013), 193–215 | DOI

[2] V. Milousheva, N.C. Turgay, “Quasi-Minimal Lorentz Surfaces with Pointwise 1-Type Gauss Map in Pseudo-Euclidean 4-space”, Journal of Geometry and Physics, 106 (2016), 171–183 | DOI

[3] U. Dursun, G.G. Arsan, “Surfaces in the Euclidean Space $E^4$ with Pointwise 1-Type Gauss Map”, Hacet. J. Math. Stat., 40:5 (2011), 617–625

[4] Verner A.L., “Cones with a Oneto-one Spherical Mapping”, Uchenye zapiski Leningradskogo gosudarstvennogo pedagogicheskogo instituta im. A. I. Gertsena, 328 (1967), 44–75 (in Russ.)

[5] Dudkin A.A., “Closed Non-convex Surfaces with Bijective Spherical Mapping, Nested in $E^3$”, Sovremennaya geometriya, 1981, 19–39 (in Russ.)

[6] Sharmin V.G., “Closed non-convex hypersurfaces with bijective spherical mapping in $E^4$”, Voprosy global'noy i rimanovoy geometrii, 1983, 92–96 (in Russ.)

[7] Bakel'man I.Ya., Verner A.L,, Kantor B.E., Introduction to differential geometry “in general”, Nauka Publ., M., 1973, 440 pp. (in Russ.)

[8] Arnol'd V.I., Ordinary differential equations, Nauka Publ., M., 1975, 239 pp. (in Russ.)

[9] Hirsch M.W., Differencial topology, Springer-Verlag, 1976, 222 pp. | DOI