Mots-clés : coefficient inverse problem
@article{VYURM_2020_12_1_a2,
author = {Kh. M. Gamzaev},
title = {Inverse problem of unsteady incompressible fluid flow in a pipe with a permeable wall},
journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matematika, mehanika, fizika},
pages = {24--30},
year = {2020},
volume = {12},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VYURM_2020_12_1_a2/}
}
TY - JOUR AU - Kh. M. Gamzaev TI - Inverse problem of unsteady incompressible fluid flow in a pipe with a permeable wall JO - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika PY - 2020 SP - 24 EP - 30 VL - 12 IS - 1 UR - http://geodesic.mathdoc.fr/item/VYURM_2020_12_1_a2/ LA - ru ID - VYURM_2020_12_1_a2 ER -
%0 Journal Article %A Kh. M. Gamzaev %T Inverse problem of unsteady incompressible fluid flow in a pipe with a permeable wall %J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika %D 2020 %P 24-30 %V 12 %N 1 %U http://geodesic.mathdoc.fr/item/VYURM_2020_12_1_a2/ %G ru %F VYURM_2020_12_1_a2
Kh. M. Gamzaev. Inverse problem of unsteady incompressible fluid flow in a pipe with a permeable wall. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 12 (2020) no. 1, pp. 24-30. http://geodesic.mathdoc.fr/item/VYURM_2020_12_1_a2/
[1] E.A. Marshall, E.A. Trowbridge, “Flow of a Newtonian Fluid through a Permeable Tube: The application to the Proximal Renal Tubule”, Bulletin of Mathematical Biology, 36:5–6 (1974), 457–476 | DOI
[2] S.M. Ross, “A mathematical model of mass transport in a long permeable tube with radial convection”, Journal of Fluid Mechanics, 63:1 (1974), 157–175 | DOI
[3] C. Pozrikidis, “Stokes flow through a permeable tube”, Archive of Applied Mechanics, 80:4 (2010), 323–333 | DOI
[4] Q. Zhang, Z. Wang, “Modeling Study on Fluid Flow in Horizontal Perforated Pipes with Wall Influx”, International Journal of Fluid Mechanics Research, 41:6 (2014), 556–566 | DOI
[5] M. Elshahed, “Blood flow in capillary under starling hypothesis”, Applied Mathematics and Computation, 149:2 (2004), 431–439 | DOI
[6] P. Muthu, T. Berhane, “Mathematical model of flow in renal tubules”, International Journal of Applied Mathematics and Mechanics, 6:20 (2010), 94–107
[7] N.K. Mariamma, S.N. Majhi, “Flow of a Newtonian Fluid in a Blood Vessel with Permeable Wall — A theoretical model”, Computers Mathematics with Applications, 40:12 (2000), 1419–1432 | DOI
[8] Kabanikhin S.I., Inverse and Ill-Posed Problems. Theory and Applications, De Gruyter, Germany, 2011, 459 pp.
[9] Samarskiy A.A., Vabishchevich P.N., Numerical Methods for Solving Inverse Problems of Mathematical Physics, URSS, LKI Publ., M., 2014, 478 pp. (in Russ.)
[10] P.N. Vabishchevich, V.I. Vasil'ev, “Computational algorithms for solving the coefficient inverse problem for parabolic equations”, Inverse Problems in Science and Engineering, 24:1 (2016), 42–59 | DOI
[11] Kh.M. Gamzaev, “Numerical Solution of Combined Inverse Problem for Generalized Burgers Equation”, Journal of Mathematical Sciences, 221:6 (2017), 833–839 | DOI