Mots-clés : Sobolev-type equations, reaction-diffusion equations
@article{VYURM_2020_12_1_a1,
author = {O. V. Gavrilova},
title = {Optimal control over solutions of a multicomponent model of reaction-diffusion in a tubular reactor},
journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matematika, mehanika, fizika},
pages = {14--23},
year = {2020},
volume = {12},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/VYURM_2020_12_1_a1/}
}
TY - JOUR AU - O. V. Gavrilova TI - Optimal control over solutions of a multicomponent model of reaction-diffusion in a tubular reactor JO - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika PY - 2020 SP - 14 EP - 23 VL - 12 IS - 1 UR - http://geodesic.mathdoc.fr/item/VYURM_2020_12_1_a1/ LA - en ID - VYURM_2020_12_1_a1 ER -
%0 Journal Article %A O. V. Gavrilova %T Optimal control over solutions of a multicomponent model of reaction-diffusion in a tubular reactor %J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika %D 2020 %P 14-23 %V 12 %N 1 %U http://geodesic.mathdoc.fr/item/VYURM_2020_12_1_a1/ %G en %F VYURM_2020_12_1_a1
O. V. Gavrilova. Optimal control over solutions of a multicomponent model of reaction-diffusion in a tubular reactor. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 12 (2020) no. 1, pp. 14-23. http://geodesic.mathdoc.fr/item/VYURM_2020_12_1_a1/
[1] I. Prigogine, R. Lefever, “Symmetry breaking instabilities in dissipative systems II”, The Journal of Chemical Physics, 48:4 (1968), 1695–1700 | DOI
[2] R. FitzHugh, “Impulses and physiological states in theoretical models of nerve membrane”, Biophysical Journal, 1:6 (1961), 445–466 | DOI
[3] J. Nagumo, S. Arimoto, S. Yoshizawa, “An active pulse transmission line simulating nerve axon”, Proceedings of the IRE, 50:10 (1962), 2061–2070 | DOI
[4] Bokareva T.A., Sviridiuk G.A., “Whitney assemblies of phase spaces of certain semilinear equations of Sobolev type”, Mathematical Notes, 55:3 (1994), 237–242 | DOI
[5] V.V. Gubernov, A.V. Kolobov, A.A. Polezhaev et al., “Stabilization of combustion wave through the competitive endothermic reaction”, Proceeding of the Royal Society A, 471:2180 (2015), 20150293 | DOI
[6] J. Savchik, Br. Chang, H. Rabitz, “Application of moments to the general linear multicomponent reaction-diffusion equation”, Journal of Physical Chemistry, 87:11 (1983), 1990–1997 | DOI
[7] S.A. Zagrebina, “A Multipoint Initial-Final Value Problem for a Linear Model of Plane-Parallel Thermal Convection in Viscoelastic Incompressible Fluid”, Bulletin of the South Ural State University. Series: Mathematical Modelling, Programming and Computer Software, 7:3 (2014), 5–22 | DOI
[8] Sviridyuk G.A., Manakova N.A., “The Phase Space of the Cauchy-Dirichlet Problem for the Oskolkov Equation of Nonlinear Filtration”, Russian Mathematics, 47:9 (2003), 33–38
[9] Sviridyuk G.A., Efremov A.A., “Optimal Control of Sobolev Type Linear Equations with Relativity p-Sectorial Operators”, Differential Equations, 31:11 (1995), 1882–1890
[10] A.A. Zamyshlyaeva, O.N. Tsyplenkova, E.V. Bychkov, “Optimal control of solutions to the initial-final for the Sobolev type equation of higher order”, Journal of Computational and Engineering Mathematics, 3:2 (2016), 57–67 | DOI
[11] Sviridyuk G.A., Manakova N.A., “An optimal control problem for the Hoff equation”, Journal of Applied and Industrial Mathematics, 1:2 (2007), 247–253
[12] Manakova N.A., Gavrilova O.V., “Optimal Control for a Mathematical Model of Nerve Impulse Spreading”, Bulletin of the South Ural State University. Ser. Mathematical Modelling, Programming Computer Software, 8:4 (2015), 120–126 | DOI
[13] A.B. Al'shin, M.O. Korpusov, A.G. Sveshnikov, Blow-up in Nonlinear Sobolev-type Equations, Walter de Gruyter GmbH and Co. KG, Berlin–N.Y., 2011, 648 pp. | DOI
[14] Lions J.-L., Quelques méthodes de résolution des problèmes aux limites non linéaires, Dunod, Paris, 1969, 554 pp. (in French)
[15] Bayazitova A.A., “The Sturm-Liouville problem on geometric graph”, Bulletin of the South Ural State University. Series: Mathematical Modelling, Programming and Computer Software, 16 (192):5 (2010), 4–10 (in Russ.)
[16] Hassard D.D., Kazarinoff N.D., Wan Y.-H., Theory and Applications of Hopf Bifurcation, Cambridge University Press, Cambridge–New York, 1981, 311 pp.
[17] Sviridyuk G.A., “On the Solvability of Singular Systems of Ordinary Differential Equations”, Differentsial'nye Uravneniya, 23:9 (1987), 1637–1639 (in Russ.)