Optimal control over solutions of a multicomponent model of reaction-diffusion in a tubular reactor
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 12 (2020) no. 1, pp. 14-23 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This article studies a mathematical model of reaction-diffusion in a tubular reactor based on degenerate equations of reaction-diffusion type defined on a geometric graph. It is precisely the degenerate case that is studied, since when building the mathematical model it is taken into account that the speed of one sought function is significantly higher than the speed of the other. This model belongs to a wide class of semilinear Sobolev-type equations. We give sufficient conditions for the simplicity of the phase manifold of the abstract Sobolev-type equation in the case of $s$-monotone and $p$-coercive operator; we prove the existence and uniqueness of a solution to the Showalter–Sidorov problem in the weak generalized sense, and the existence of optimal control over weak generalized solutions to this problem. On the basis of the abstract theory, we find sufficient conditions for the existence of optimal control for a mathematical model of neural signal transmission.
Keywords: phase manifold, Showalter–Sidorov problem, optimal control problem.
Mots-clés : Sobolev-type equations, reaction-diffusion equations
@article{VYURM_2020_12_1_a1,
     author = {O. V. Gavrilova},
     title = {Optimal control over solutions of a multicomponent model of reaction-diffusion in a tubular reactor},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matematika, mehanika, fizika},
     pages = {14--23},
     year = {2020},
     volume = {12},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VYURM_2020_12_1_a1/}
}
TY  - JOUR
AU  - O. V. Gavrilova
TI  - Optimal control over solutions of a multicomponent model of reaction-diffusion in a tubular reactor
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
PY  - 2020
SP  - 14
EP  - 23
VL  - 12
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VYURM_2020_12_1_a1/
LA  - en
ID  - VYURM_2020_12_1_a1
ER  - 
%0 Journal Article
%A O. V. Gavrilova
%T Optimal control over solutions of a multicomponent model of reaction-diffusion in a tubular reactor
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
%D 2020
%P 14-23
%V 12
%N 1
%U http://geodesic.mathdoc.fr/item/VYURM_2020_12_1_a1/
%G en
%F VYURM_2020_12_1_a1
O. V. Gavrilova. Optimal control over solutions of a multicomponent model of reaction-diffusion in a tubular reactor. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 12 (2020) no. 1, pp. 14-23. http://geodesic.mathdoc.fr/item/VYURM_2020_12_1_a1/

[1] I. Prigogine, R. Lefever, “Symmetry breaking instabilities in dissipative systems II”, The Journal of Chemical Physics, 48:4 (1968), 1695–1700 | DOI

[2] R. FitzHugh, “Impulses and physiological states in theoretical models of nerve membrane”, Biophysical Journal, 1:6 (1961), 445–466 | DOI

[3] J. Nagumo, S. Arimoto, S. Yoshizawa, “An active pulse transmission line simulating nerve axon”, Proceedings of the IRE, 50:10 (1962), 2061–2070 | DOI

[4] Bokareva T.A., Sviridiuk G.A., “Whitney assemblies of phase spaces of certain semilinear equations of Sobolev type”, Mathematical Notes, 55:3 (1994), 237–242 | DOI

[5] V.V. Gubernov, A.V. Kolobov, A.A. Polezhaev et al., “Stabilization of combustion wave through the competitive endothermic reaction”, Proceeding of the Royal Society A, 471:2180 (2015), 20150293 | DOI

[6] J. Savchik, Br. Chang, H. Rabitz, “Application of moments to the general linear multicomponent reaction-diffusion equation”, Journal of Physical Chemistry, 87:11 (1983), 1990–1997 | DOI

[7] S.A. Zagrebina, “A Multipoint Initial-Final Value Problem for a Linear Model of Plane-Parallel Thermal Convection in Viscoelastic Incompressible Fluid”, Bulletin of the South Ural State University. Series: Mathematical Modelling, Programming and Computer Software, 7:3 (2014), 5–22 | DOI

[8] Sviridyuk G.A., Manakova N.A., “The Phase Space of the Cauchy-Dirichlet Problem for the Oskolkov Equation of Nonlinear Filtration”, Russian Mathematics, 47:9 (2003), 33–38

[9] Sviridyuk G.A., Efremov A.A., “Optimal Control of Sobolev Type Linear Equations with Relativity p-Sectorial Operators”, Differential Equations, 31:11 (1995), 1882–1890

[10] A.A. Zamyshlyaeva, O.N. Tsyplenkova, E.V. Bychkov, “Optimal control of solutions to the initial-final for the Sobolev type equation of higher order”, Journal of Computational and Engineering Mathematics, 3:2 (2016), 57–67 | DOI

[11] Sviridyuk G.A., Manakova N.A., “An optimal control problem for the Hoff equation”, Journal of Applied and Industrial Mathematics, 1:2 (2007), 247–253

[12] Manakova N.A., Gavrilova O.V., “Optimal Control for a Mathematical Model of Nerve Impulse Spreading”, Bulletin of the South Ural State University. Ser. Mathematical Modelling, Programming Computer Software, 8:4 (2015), 120–126 | DOI

[13] A.B. Al'shin, M.O. Korpusov, A.G. Sveshnikov, Blow-up in Nonlinear Sobolev-type Equations, Walter de Gruyter GmbH and Co. KG, Berlin–N.Y., 2011, 648 pp. | DOI

[14] Lions J.-L., Quelques méthodes de résolution des problèmes aux limites non linéaires, Dunod, Paris, 1969, 554 pp. (in French)

[15] Bayazitova A.A., “The Sturm-Liouville problem on geometric graph”, Bulletin of the South Ural State University. Series: Mathematical Modelling, Programming and Computer Software, 16 (192):5 (2010), 4–10 (in Russ.)

[16] Hassard D.D., Kazarinoff N.D., Wan Y.-H., Theory and Applications of Hopf Bifurcation, Cambridge University Press, Cambridge–New York, 1981, 311 pp.

[17] Sviridyuk G.A., “On the Solvability of Singular Systems of Ordinary Differential Equations”, Differentsial'nye Uravneniya, 23:9 (1987), 1637–1639 (in Russ.)