@article{VYURM_2019_11_4_a3,
author = {A. V. Panyukov and Ya. A. Mezaal},
title = {Parametric identification of quasilinear difference equation},
journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matematika, mehanika, fizika},
pages = {32--38},
year = {2019},
volume = {11},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VYURM_2019_11_4_a3/}
}
TY - JOUR AU - A. V. Panyukov AU - Ya. A. Mezaal TI - Parametric identification of quasilinear difference equation JO - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika PY - 2019 SP - 32 EP - 38 VL - 11 IS - 4 UR - http://geodesic.mathdoc.fr/item/VYURM_2019_11_4_a3/ LA - ru ID - VYURM_2019_11_4_a3 ER -
%0 Journal Article %A A. V. Panyukov %A Ya. A. Mezaal %T Parametric identification of quasilinear difference equation %J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika %D 2019 %P 32-38 %V 11 %N 4 %U http://geodesic.mathdoc.fr/item/VYURM_2019_11_4_a3/ %G ru %F VYURM_2019_11_4_a3
A. V. Panyukov; Ya. A. Mezaal. Parametric identification of quasilinear difference equation. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 11 (2019) no. 4, pp. 32-38. http://geodesic.mathdoc.fr/item/VYURM_2019_11_4_a3/
[1] N. S. Raybman, What is Identification?, Nauka Publ., M., 1970, 119 pp. (in Russ.)
[2] G. Gabisch, H. W. Lorenz, Business Cycle Theory, Springer-Verlag, 1989, 250 pp. | DOI | Zbl
[3] S. Davies, “Inter-Firm Diffusion of Process Innovations”, European Economic Review, 12:4 (1979), 299–317 | DOI
[4] I. Grabec, W. Sachse, Synergetics of Measurements, Prediction and Control, Springer Series in Synergetics, 68, Springer Verlag, Berlin–New York, 1997, 458 pp. | DOI | MR
[5] A. V. Panyukov, Y. A. Mezaal, “Stable Identification of Linear Autoregressive Model with Exogenous Varia-Bles on the Basis of the Generalized least Absolute Deviation Method”, Bulletin of the South Ural State University. Series “Mathematical Modelling, Programming Computer Software”, 11:1 (2018), 35–43 | DOI | Zbl
[6] A. V. Panyukov, Y. A. Mezaal, “Stable estimation of autoregressive model parameters with exogenous variables on the basis of the generalized least absolute deviation method”, IFAC-PapersOnLine, 51:11 (2018), 1666–1669 | DOI
[7] A. V. Panyukov, I. A. Tetin, Y. A. Mezaal, “Linkage Between Wlad and Glad and its Applications for Autoregressive Analysis”, Proceedings of the 4th International Conference ‘`Information Technologies for Intelligent Decision Making Support (ITIDS’2016)", 2016, 224–227
[8] M. Minoux, Programmation mathematique: theorie et algorithmes, Dunod, Paris, 1983 (in French) | MR | Zbl
[9] J. B. Rosen, “The Gradient Projection Method for Nonlinear Programming. Part 1: Linear Constraints”, Journal S.I.A.M., 8 (1960), 181–217 | MR | Zbl
[10] L. S. Gurin, “On the Consistency of the Least Squares Method Estimates”, Mathematical Support of Space Experiments, Collection of Scientific Papers, Nauka, M., 1978, 69–81 (in Russ.)
[11] V. I. Mudrov, V. L. Kushko, Methods for Processing Measurements: Quasilike Estimates, URSS Publ., M., 2014, 302 pp. (in Russ.)
[12] A. L. Shestakov, A. V. Keller, G. A. Sviridyuk, “The Theory of Optimal Measurements”, Journal of Computational and Engineering Mathematics, 1:1 (2014), 3–16 (in Russ.) | Zbl
[13] P. Huber, E. M. Ronchetti, Robust Statistics, Wiley, New York, 2009, 354 pp. | DOI | MR | Zbl
[14] P. Bloomheld, W. Steiger, Least Absolute Deviations Theory, Applications, and Algorithms, Birkhauser, Boston–Basel–Stuttgart, 1983, 351 pp. | DOI | MR
[15] J. Pan, H. Wang, Y. Qiwei, “Weighted Least Absolute Deviations Estimation for ARMA Models with Infinite Variance”, Econometric Theory, 23:3 (2007), 852–879 | DOI | MR | Zbl
[16] A. Panyukov, A. Tyrsin, “Stable Parametric Identification of Vibratory Diagnostics Objects”, Journal of Vibroengineering, 10:2 (2008), 142–146
[17] A. N. Tvrsin, A. A. Azaryan, “Exact Algorithms for Implementation of the Least Absolute Deviations' Method Based on the Descent Through the Nodal Straight Lines”, BSU Bulletin. Mathematics, Informatics, 2017, no. 4, 21–32 (in Russ.) | MR