Mots-clés : initial-final conditions.
@article{VYURM_2019_11_4_a2,
author = {A. A. Zamyshlyaeva and O. N. Tsyplenkova},
title = {Optimal control of solutions to the initial-final problem for the model of linear waves in a plasma},
journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matematika, mehanika, fizika},
pages = {26--31},
year = {2019},
volume = {11},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/VYURM_2019_11_4_a2/}
}
TY - JOUR AU - A. A. Zamyshlyaeva AU - O. N. Tsyplenkova TI - Optimal control of solutions to the initial-final problem for the model of linear waves in a plasma JO - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika PY - 2019 SP - 26 EP - 31 VL - 11 IS - 4 UR - http://geodesic.mathdoc.fr/item/VYURM_2019_11_4_a2/ LA - en ID - VYURM_2019_11_4_a2 ER -
%0 Journal Article %A A. A. Zamyshlyaeva %A O. N. Tsyplenkova %T Optimal control of solutions to the initial-final problem for the model of linear waves in a plasma %J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika %D 2019 %P 26-31 %V 11 %N 4 %U http://geodesic.mathdoc.fr/item/VYURM_2019_11_4_a2/ %G en %F VYURM_2019_11_4_a2
A. A. Zamyshlyaeva; O. N. Tsyplenkova. Optimal control of solutions to the initial-final problem for the model of linear waves in a plasma. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 11 (2019) no. 4, pp. 26-31. http://geodesic.mathdoc.fr/item/VYURM_2019_11_4_a2/
[1] A. G. Sveshnikov, A. B. Al'shin, M. O. Korpusov, Yu. D. Pletner, Linear and Nonlinear the Sobolev Type Equations, Fizmatlit, M., 2007, 736 pp. (in Russ.)
[2] A. A. Zamyshlyaeva, “The Higher-Order Sobolev-Type Models”, Bulletin of the South Ural State University, Series “Mathematical Modelling, Programming Computer Software”, 7:2 (2014), 5–28 (in Russ.) | DOI | Zbl
[3] M.A. Sagadeeva, S.A. Zagrebina, N.A. Manakova, “Optimal Control of Solutions of a Multipoint Initial-Finish Problem for Non-Autonomous Evolutionary Sobolev Type Equation”, Evolution Equations and Control Theory, 8:3 (2019), 473–488 | DOI | MR | Zbl
[4] N.A. Manakova, E.A. Bogatyreva, “Mathematical Model of the Start Control of Electric Field Potential in Conducting Medium without Dispersion Considering Relaxation”, 2016 2nd International Conference on Industrial Engineering, Applications and Manufacturing (ICIEAM) (Chelyabinsk, 2016), 1–5 | DOI
[5] A. A. Zamyshlyaeva, O. N. Tsyplenkova, “Optimal Control of Solutions to the Showalter-Sidorov Problem in a Model of Linear Waves in Plazma”, Journal of Computational and Engineering Mathematics, 5:4 (2018), 46–57 | DOI | MR
[6] E. A. Bogatyreva, N. A. Manakova, “Numerical Simulation of the Process of Nonequilibrium Counterflow Capillary Imbiition”, Computational mathematics and mathematical physics, 56:1 (2016), 132–139 | DOI | DOI | MR | Zbl
[7] A. V. Keller, A. A. Ebel, “Parallelization of Numerical Algorithm for Optimum Dynamic Measurement Problem Solution”, Proc. 2nd International Ural Conference on Measurements (UralCon) (Chelyabinsk, 2017), 372–377 | DOI
[8] G. A. Zakirova, “Inverse Spectral Problems and Mathematical Models of Continuum Mechanics”, Bulletin of the South Ural State University, Series “Mathematical Modelling, Programming Computer Software”, 12:2 (2019), 5–24 | DOI | Zbl
[9] D. E. Shafranov, O. G. Kitaeva, “The Barenblatt-Zheltov-Kochina Model with the Showalter-Sidorov Condition and Additive “white noise” in Spaces of Differential Forms on Riemannian Manifolds without Boundary”, Global and Stochastic Analysis, 5:2 (2018), 139–152
[10] G.A. Sviridyuk, V.E. Fedorov, Linear Sobolev Type Equations and Degenerate Semigroups of Operators, VSP, Utrecht–Boston–Köln–Tokyo, 2003, 216 pp. | DOI | MR | Zbl
[11] N. A. Manakova, G. A. Svirigyuk, “An Optimal Control of the Solutions of the Initial-Final Problem for Linear Sobolev Type Equations with Strongly Relatively p-Radial Operator”, Semigroup of operators theory and applications, 2015, 213–224 | DOI | MR | Zbl
[12] G. A. Sviridyuk, A. A. Efremov, “Optimal Control of Sobolev Type Linear Equations with Relatively p-Sectorial Operators”, Differential Equations, 31:11 (1995), 1882–1890 | MR | Zbl
[13] A. A. Zamyshlyaeva, O. N. Tsyplenkova, E. V. Bychkov, “Optimal Control of Solutions to the Showalter-Sidorov Problem for the Sobolev type Equation of Higher Order”, Proc. 2nd International Conference on Industrial Engineering, Applications and Manufacturing (ICIEAM) (Chelyabinsk, 2016), 1–4 | DOI | MR | Zbl
[14] A. Favini, S. A. Zagrebina, G. A. Sviridyuk, “Multipoint Initial-Final Value Problems for Dynamical Sobolev-type Equations in the Space of Noises”, Electronic Journal of Differential Equations, 2018 (2018), 128 | MR | Zbl
[15] A. A. Zamyshlyaeva, Linear Sobolev Type Equations of Higher Order, Publishing center of SUSU, Chelyabinsk, 2012, 88 pp. (in Russ.)