Optimal control of solutions to the initial-final problem for the model of linear waves in a plasma
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 11 (2019) no. 4, pp. 26-31
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The optimal control problem for a Sobolev type equation of higher order with a relatively polynomially bounded operator pencil is investigated in the paper. The results are applied to the study of the optimal control of solutions to the initial-final problem for the model of linear waves in plasma. The first results on the investigation of equation that describes the linear ion-acoustic waves in an unmagnetized plasma and on the study of some properties of these waves were obtained by Yu.D. Pletner. The initial-final conditions posed for the fourth-order Sobolev type equation are the generalization of the conditions in the Cauchy problem that is unsolvable at the arbitrary initial values. The research is based on the phase space method developed by G.A. Sviridiuk and the theory of relatively polynomially bounded operator pencil developed by A.A. Zamyshlyaeva. The article considers an equation that describes ion-acoustic waves in a plasma in an external magnetic field.
Keywords: Sobolev type equations of higher order with a relatively polynomially bounded operator pencil, model of linear waves in a plasma, optimal control problem
Mots-clés : initial-final conditions.
@article{VYURM_2019_11_4_a2,
     author = {A. A. Zamyshlyaeva and O. N. Tsyplenkova},
     title = {Optimal control of solutions to the initial-final problem for the model of linear waves in a plasma},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matematika, mehanika, fizika},
     pages = {26--31},
     year = {2019},
     volume = {11},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VYURM_2019_11_4_a2/}
}
TY  - JOUR
AU  - A. A. Zamyshlyaeva
AU  - O. N. Tsyplenkova
TI  - Optimal control of solutions to the initial-final problem for the model of linear waves in a plasma
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
PY  - 2019
SP  - 26
EP  - 31
VL  - 11
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VYURM_2019_11_4_a2/
LA  - en
ID  - VYURM_2019_11_4_a2
ER  - 
%0 Journal Article
%A A. A. Zamyshlyaeva
%A O. N. Tsyplenkova
%T Optimal control of solutions to the initial-final problem for the model of linear waves in a plasma
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
%D 2019
%P 26-31
%V 11
%N 4
%U http://geodesic.mathdoc.fr/item/VYURM_2019_11_4_a2/
%G en
%F VYURM_2019_11_4_a2
A. A. Zamyshlyaeva; O. N. Tsyplenkova. Optimal control of solutions to the initial-final problem for the model of linear waves in a plasma. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 11 (2019) no. 4, pp. 26-31. http://geodesic.mathdoc.fr/item/VYURM_2019_11_4_a2/

[1] A. G. Sveshnikov, A. B. Al'shin, M. O. Korpusov, Yu. D. Pletner, Linear and Nonlinear the Sobolev Type Equations, Fizmatlit, M., 2007, 736 pp. (in Russ.)

[2] A. A. Zamyshlyaeva, “The Higher-Order Sobolev-Type Models”, Bulletin of the South Ural State University, Series “Mathematical Modelling, Programming Computer Software”, 7:2 (2014), 5–28 (in Russ.) | DOI | Zbl

[3] M.A. Sagadeeva, S.A. Zagrebina, N.A. Manakova, “Optimal Control of Solutions of a Multipoint Initial-Finish Problem for Non-Autonomous Evolutionary Sobolev Type Equation”, Evolution Equations and Control Theory, 8:3 (2019), 473–488 | DOI | MR | Zbl

[4] N.A. Manakova, E.A. Bogatyreva, “Mathematical Model of the Start Control of Electric Field Potential in Conducting Medium without Dispersion Considering Relaxation”, 2016 2nd International Conference on Industrial Engineering, Applications and Manufacturing (ICIEAM) (Chelyabinsk, 2016), 1–5 | DOI

[5] A. A. Zamyshlyaeva, O. N. Tsyplenkova, “Optimal Control of Solutions to the Showalter-Sidorov Problem in a Model of Linear Waves in Plazma”, Journal of Computational and Engineering Mathematics, 5:4 (2018), 46–57 | DOI | MR

[6] E. A. Bogatyreva, N. A. Manakova, “Numerical Simulation of the Process of Nonequilibrium Counterflow Capillary Imbiition”, Computational mathematics and mathematical physics, 56:1 (2016), 132–139 | DOI | DOI | MR | Zbl

[7] A. V. Keller, A. A. Ebel, “Parallelization of Numerical Algorithm for Optimum Dynamic Measurement Problem Solution”, Proc. 2nd International Ural Conference on Measurements (UralCon) (Chelyabinsk, 2017), 372–377 | DOI

[8] G. A. Zakirova, “Inverse Spectral Problems and Mathematical Models of Continuum Mechanics”, Bulletin of the South Ural State University, Series “Mathematical Modelling, Programming Computer Software”, 12:2 (2019), 5–24 | DOI | Zbl

[9] D. E. Shafranov, O. G. Kitaeva, “The Barenblatt-Zheltov-Kochina Model with the Showalter-Sidorov Condition and Additive “white noise” in Spaces of Differential Forms on Riemannian Manifolds without Boundary”, Global and Stochastic Analysis, 5:2 (2018), 139–152

[10] G.A. Sviridyuk, V.E. Fedorov, Linear Sobolev Type Equations and Degenerate Semigroups of Operators, VSP, Utrecht–Boston–Köln–Tokyo, 2003, 216 pp. | DOI | MR | Zbl

[11] N. A. Manakova, G. A. Svirigyuk, “An Optimal Control of the Solutions of the Initial-Final Problem for Linear Sobolev Type Equations with Strongly Relatively p-Radial Operator”, Semigroup of operators theory and applications, 2015, 213–224 | DOI | MR | Zbl

[12] G. A. Sviridyuk, A. A. Efremov, “Optimal Control of Sobolev Type Linear Equations with Relatively p-Sectorial Operators”, Differential Equations, 31:11 (1995), 1882–1890 | MR | Zbl

[13] A. A. Zamyshlyaeva, O. N. Tsyplenkova, E. V. Bychkov, “Optimal Control of Solutions to the Showalter-Sidorov Problem for the Sobolev type Equation of Higher Order”, Proc. 2nd International Conference on Industrial Engineering, Applications and Manufacturing (ICIEAM) (Chelyabinsk, 2016), 1–4 | DOI | MR | Zbl

[14] A. Favini, S. A. Zagrebina, G. A. Sviridyuk, “Multipoint Initial-Final Value Problems for Dynamical Sobolev-type Equations in the Space of Noises”, Electronic Journal of Differential Equations, 2018 (2018), 128 | MR | Zbl

[15] A. A. Zamyshlyaeva, Linear Sobolev Type Equations of Higher Order, Publishing center of SUSU, Chelyabinsk, 2012, 88 pp. (in Russ.)