Mots-clés : fractal element
@article{VYURM_2019_11_3_a6,
author = {A. V. Khokhlov},
title = {Monotone increase of the strain rate sensitivity value of any parallel connection of the fractional {Kelvin{\textendash}Voigt} models},
journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matematika, mehanika, fizika},
pages = {56--67},
year = {2019},
volume = {11},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VYURM_2019_11_3_a6/}
}
TY - JOUR AU - A. V. Khokhlov TI - Monotone increase of the strain rate sensitivity value of any parallel connection of the fractional Kelvin–Voigt models JO - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika PY - 2019 SP - 56 EP - 67 VL - 11 IS - 3 UR - http://geodesic.mathdoc.fr/item/VYURM_2019_11_3_a6/ LA - ru ID - VYURM_2019_11_3_a6 ER -
%0 Journal Article %A A. V. Khokhlov %T Monotone increase of the strain rate sensitivity value of any parallel connection of the fractional Kelvin–Voigt models %J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika %D 2019 %P 56-67 %V 11 %N 3 %U http://geodesic.mathdoc.fr/item/VYURM_2019_11_3_a6/ %G ru %F VYURM_2019_11_3_a6
A. V. Khokhlov. Monotone increase of the strain rate sensitivity value of any parallel connection of the fractional Kelvin–Voigt models. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 11 (2019) no. 3, pp. 56-67. http://geodesic.mathdoc.fr/item/VYURM_2019_11_3_a6/
[1] Bochvar A.A., Sviderskaia Z.A., “Super-plasticity phenomenon in zinc-aluminum alloys”, Izvestiia akademii nauk SSSR. Otdelenie tekhnicheskikh nauk, 1945, no. 9, 821–824 (in Russ.)
[2] Grabskiy M.V., Structural superplasticity of metals, Metallurgiya Publ., M., 1975, 270 pp. (in Russ.)
[3] Smirnov O.M., Shaping of Metals in the Superplasticity State, Mashinostroenie Publ., M., 1979, 184 pp. (in Russ.)
[4] K.A. Padmanabhan, J.J. Davies, Superplasticity, Springer-Verlag, Berlin, 1980, 314 pp. | MR
[5] Kaybyshev O.A., Superplasticity of industrial alloys, Metallurgiya Publ., M., 1984, 263 pp. (in Russ.)
[6] Segal V.M., Reznikov V.I., Kopylov V.I., Pavlik D.A., Processes of plastic structure formation of metals, Nauka i tekhnika Publ., Minsk, 1994, 232 pp. (in Russ.)
[7] T.G. Nieh, J. Wadsworth, O.D. Sherby, Superplasticity in metals and ceramics, Cambridge University Press, 1997, 287 pp. | DOI
[8] Vasin R.A., Enikeev F.U., Introduction to the superplasticity mechanics, Gilem Publ., Ufa, 1998, 280 pp. (in Russ.)
[9] K.A. Padmanabhan, R.A. Vasin, F.U. Enikeev, Superplastic Flow: Phenomenology and Mechanics, Springer-Verlag, Berlin–Heidelberg, 2001, 363 pp.
[10] V.M. Segal, I.J. Beyerlein, C.N. Tome et al., Fundamentals and Engineering of Severe Plastic Deformation, Nova Science Pub. Inc., New York, 2010, 542 pp.
[11] Efimov O.Yu., Gromov V.E., Ivanov Yu.F., Forming of structure, phase composition and properties of steels and alloys in the hardening technologies of pressure treatment, Sibirskii gosudarstvennyi industrial'nyi universitet, Inter-Kuzbass Publ., Novokuznetsk, 2012, 345 pp. (in Russ.)
[12] G. Faraji, H.S. Kim, H.T. Kashi, Severe Plastic Deformation: Methods, Processing and Properties, Elsevier, 2018, 324 pp. | DOI
[13] R.A. Vasin, F.U. Enikeev, M.I. Mazurski, O.S. Munirova, “Mechanical modelling of the universal superplastic curve”, J. Mater. Sci., 35:10 (2000), 2455–2466 | DOI
[14] Beliakova T.A., Goncharov I.A., Khokhlov A.V., “The impossibility of modelling of sigmoid superplasticity curves using only parallel or series connections of power-law viscous elements”, Mekhanika kompozitsionnykh materialov i konstruktsii
[15] Khokhlov A.V., “The function characterizing strain rate sensitivity in the linear viscoelasticity theory and the relaxation modulus reconstruction assuming the function is given”, Problemy prochnosti i plastichnosti | MR
[16] G.W. Scott Blair, J. Caffyn, “Significance of power-law relations in rheology”, Nature, 155 (1945), 171–172 | DOI
[17] I. Podlubny, Fractional differential equations. An introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications, Mathematics in Science and Engineering, 198, Academic Press, San Diego, 1999, 340 pp. | MR | Zbl
[18] A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, 204, Elsevier, Amsterdam, 2006, 523 pp. | MR | Zbl
[19] F. Mainardi, G. Spada, “Creep, relaxation and viscosity properties for basic fractional models in rheology”, The European Physical Journal. Special Topics, 193:1 (2011), 133–160 | DOI
[20] Ogorodnikov E.N., Radchenko V.P., Ungarova L.G., “Mathematical modeling of hereditary elastically deformable body on the basis of structural models and fractional integro-differentiation Riemann-Liouville apparatus”, J. Samara State Tech. Univ., Ser. Phys. Math. Sci., 20:1 (2016), 167–194 (in Russ.) | DOI | Zbl
[21] Khokhlov A.V., “General properties of stress-strain curves at constant strain rate yielding from the linear theory of viscoelasticity”, Problems of strenght and plasticity, 77:1 (2015), 60–74 (in Russ.) | DOI
[22] Khokhlov A.V., “Analysis of creep curves produced by the linear viscoelasticity theory under cyclic stepwise loadings”, J. Samara State Tech. Univ., Ser. Phys. Math. Sci., 21:2 (2017), 326–361 (in Russ.) | DOI | Zbl
[23] Khokhlov A.V., “Two-sided estimates for the relaxation function of the linear theory of heredity via the relaxation curves during the ramp-deformation and the methodology of identification”, Mechanics of Solids, 53:3 (2018), 307–328 | DOI | DOI
[24] Khokhlov A.V., “Applicability indicators of the linear viscoelasticity theory using creep curves under tensile load combined with constant hydrostatic pressure”, Mekhanika kompozitsionnykh materialov i konstruktsii, 25:2 (2019) (in Russ.) | DOI
[25] G.S. Murty, S. Banerjee, “Evaluation of threshold stress from the stress-strain rate data of superplastic materials”, Scripta Metallurgica et Materialia, 31:6 (1994), 707–712 | DOI