Gas bubbles effect on the vibration parameters of the Coriolis flowmeter measuring tubes
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 11 (2019) no. 3, pp. 47-55 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In developing a methodology for measuring the mass flow rates of liquid-gas flows by Coriolis mass flowmeters (CMF), an attempt is made to estimate the effect of the presence of gas bubbles on the observed parameters of the vibrations of the CMF measuring tube. The finite-element model CMF with a straight tube, created in MATLAB package, is presented. The fluid flow is described in the 1D-approximation, the presence of a gas bubble is modeled by a local change in the flux density at the bubble location at a given time (the size of the bubble depends on the size of the finite element). Bending vibrations of the tube are carried out by means of an external harmonic force applied at the center of the tube. The drive frequency is set equal to the modal frequency of the filled tube. A series of numerical experiments has been performed, in which the gas volume fraction (GVF) and the fluid velocity varied. The dependence of the phase shift between the flowmeter arms oscillations caused by the Coriolis effect on these factors has been revealed. The error in determining the mass flow due to the bubbles presence is estimated. A series of experiments has been conducted with an industrial DU15 flowmeter to observe bubble effects. The results of the experiments are compared with the predictions of numerical calculations and their qualitative agreement is found.
Keywords: Сoriolis mass flowmeter, gas-liquid flow, numerical experiments, finite-element methods.
@article{VYURM_2019_11_3_a5,
     author = {I. A. Lekh and P. A. Taranenko and V. P. Beskachko},
     title = {Gas bubbles effect on the vibration parameters of the {Coriolis} flowmeter measuring tubes},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matematika, mehanika, fizika},
     pages = {47--55},
     year = {2019},
     volume = {11},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VYURM_2019_11_3_a5/}
}
TY  - JOUR
AU  - I. A. Lekh
AU  - P. A. Taranenko
AU  - V. P. Beskachko
TI  - Gas bubbles effect on the vibration parameters of the Coriolis flowmeter measuring tubes
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
PY  - 2019
SP  - 47
EP  - 55
VL  - 11
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VYURM_2019_11_3_a5/
LA  - ru
ID  - VYURM_2019_11_3_a5
ER  - 
%0 Journal Article
%A I. A. Lekh
%A P. A. Taranenko
%A V. P. Beskachko
%T Gas bubbles effect on the vibration parameters of the Coriolis flowmeter measuring tubes
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
%D 2019
%P 47-55
%V 11
%N 3
%U http://geodesic.mathdoc.fr/item/VYURM_2019_11_3_a5/
%G ru
%F VYURM_2019_11_3_a5
I. A. Lekh; P. A. Taranenko; V. P. Beskachko. Gas bubbles effect on the vibration parameters of the Coriolis flowmeter measuring tubes. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 11 (2019) no. 3, pp. 47-55. http://geodesic.mathdoc.fr/item/VYURM_2019_11_3_a5/

[1] R.C. Baker, “Coriolis flowmeters: industrial practice and published information”, Flow Measurement and Instrumentation, 5:4 (1994), 229–246 | DOI

[2] T. Wang, R. Baker, “Coriolis flowmeters: a review of developments over the past 20 years, and an assessment of the state of the art and likely future directions”, Flow Measurement and Instrumentation, 40 (2014), 99–123 | DOI

[3] B.R. Binulal, K. Jayarai, “Coriolis Flow meter: A Review from 1989 to 2014”, International Journal of Scientific Engineering Research, 5:7 (2014), 718–723

[4] W. Drahm, A. Rieder, “Coriolis mass flowmeters: Overview of the current state of the art and latest research”, Flow Measurement and Instrumentation, 17:6 (2006), 317–323 | DOI

[5] V.A. Kolhe, R.L. Edlabadkar, “An overview of Coriolis Mass Flowmeter as a Direct Mass Flow Measurement Device”, Int. J. on Emerging Trends in Technology (IJETT), 3:2 (2016), 2112–2119

[6] W. Hakvoort, J.P. Meijaard, R.G.K.M. Aarts et al., “Modeling a Coriolis Mass Flow Meter for Shape Optimization”, Proceedings of The 1st Joint International Conference on Multibody System Dynamics, Lappeenranta University of Technology, Lappeenranta, Finland, 2010, 1–10

[7] C.E. Brennen, Fundamentals of Multiphase Flows, Cambridge University Press, 2005, 220–245 | DOI

[8] A.E. Dukler, Y. Taitel, “Flow Pattern Transitions in Gas-liquid Systems: Measurement and Modeling”, Multiphase science and technology, 1986, 1–94 | DOI

[9] M. Henry, M. Tombs, M. Duta et al., “Two-phase flow metering of viscous oil using a Coriolis mass flow meter: a case study”, Flow Measurement and Instrumentation, 17:6 (2006), 399–413 | DOI

[10] M. Henry, M. Tombs, F. Zhou, M. Zamora, “New Applications for Coriolis Meter-based Multiphase Flow Metering in the Oil and Gas Industries”, The 10th International symposium of measurement technology and intelligent instruments (June 29–July 2, 2011), 1–6 | MR

[11] M.P. Henry, M.S. Tombs, M.E. Zamora, F.B. Zhou, “Coriolis mass flow metering for three-phase flow: A case study”, Flow Measurement and Instrumentation, 30 (2013), 112–122 | DOI

[12] S. Wang, C. Clark, R. Cheesewright, “Virtual Coriolis flow meter: a tool for simulation and design”, Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 220:6 (2006), 817–835 | DOI

[13] C. Stack, R. Garnett, G. Pawlas, “A finite element for the vibration analysis of a fluid-conveying Timoshenko beam”, 34th Structures, Structural Dynamics and Materials Conference, 1993, 1552–1562 | DOI

[14] R. van Hout, L. Shemer, D. Barnea, “Evolution of hydrodynamic and statistical parameters of gas-liquid slug flow along inclined pipes”, Chemical Engineering Science, 58:1 (2003), 115–133 | DOI | MR

[15] Y. Taitel, D. Barnea, “Hydrodynamic Models Based on Flow Patterns”, Encyclopedia of Two-Phase Heat Transfer and Flow I, 2015, 23–99 | DOI

[16] A. Belhadj, R. Cheesewright, C. Clark, “The simulation of Coriolis meter response to pulsating flow using a general purpose F. E. code”, Journal of fluids and structures, 14:5 (2000), 613–634 | DOI