@article{VYURM_2019_11_3_a5,
author = {I. A. Lekh and P. A. Taranenko and V. P. Beskachko},
title = {Gas bubbles effect on the vibration parameters of the {Coriolis} flowmeter measuring tubes},
journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matematika, mehanika, fizika},
pages = {47--55},
year = {2019},
volume = {11},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VYURM_2019_11_3_a5/}
}
TY - JOUR AU - I. A. Lekh AU - P. A. Taranenko AU - V. P. Beskachko TI - Gas bubbles effect on the vibration parameters of the Coriolis flowmeter measuring tubes JO - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika PY - 2019 SP - 47 EP - 55 VL - 11 IS - 3 UR - http://geodesic.mathdoc.fr/item/VYURM_2019_11_3_a5/ LA - ru ID - VYURM_2019_11_3_a5 ER -
%0 Journal Article %A I. A. Lekh %A P. A. Taranenko %A V. P. Beskachko %T Gas bubbles effect on the vibration parameters of the Coriolis flowmeter measuring tubes %J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika %D 2019 %P 47-55 %V 11 %N 3 %U http://geodesic.mathdoc.fr/item/VYURM_2019_11_3_a5/ %G ru %F VYURM_2019_11_3_a5
I. A. Lekh; P. A. Taranenko; V. P. Beskachko. Gas bubbles effect on the vibration parameters of the Coriolis flowmeter measuring tubes. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 11 (2019) no. 3, pp. 47-55. http://geodesic.mathdoc.fr/item/VYURM_2019_11_3_a5/
[1] R.C. Baker, “Coriolis flowmeters: industrial practice and published information”, Flow Measurement and Instrumentation, 5:4 (1994), 229–246 | DOI
[2] T. Wang, R. Baker, “Coriolis flowmeters: a review of developments over the past 20 years, and an assessment of the state of the art and likely future directions”, Flow Measurement and Instrumentation, 40 (2014), 99–123 | DOI
[3] B.R. Binulal, K. Jayarai, “Coriolis Flow meter: A Review from 1989 to 2014”, International Journal of Scientific Engineering Research, 5:7 (2014), 718–723
[4] W. Drahm, A. Rieder, “Coriolis mass flowmeters: Overview of the current state of the art and latest research”, Flow Measurement and Instrumentation, 17:6 (2006), 317–323 | DOI
[5] V.A. Kolhe, R.L. Edlabadkar, “An overview of Coriolis Mass Flowmeter as a Direct Mass Flow Measurement Device”, Int. J. on Emerging Trends in Technology (IJETT), 3:2 (2016), 2112–2119
[6] W. Hakvoort, J.P. Meijaard, R.G.K.M. Aarts et al., “Modeling a Coriolis Mass Flow Meter for Shape Optimization”, Proceedings of The 1st Joint International Conference on Multibody System Dynamics, Lappeenranta University of Technology, Lappeenranta, Finland, 2010, 1–10
[7] C.E. Brennen, Fundamentals of Multiphase Flows, Cambridge University Press, 2005, 220–245 | DOI
[8] A.E. Dukler, Y. Taitel, “Flow Pattern Transitions in Gas-liquid Systems: Measurement and Modeling”, Multiphase science and technology, 1986, 1–94 | DOI
[9] M. Henry, M. Tombs, M. Duta et al., “Two-phase flow metering of viscous oil using a Coriolis mass flow meter: a case study”, Flow Measurement and Instrumentation, 17:6 (2006), 399–413 | DOI
[10] M. Henry, M. Tombs, F. Zhou, M. Zamora, “New Applications for Coriolis Meter-based Multiphase Flow Metering in the Oil and Gas Industries”, The 10th International symposium of measurement technology and intelligent instruments (June 29–July 2, 2011), 1–6 | MR
[11] M.P. Henry, M.S. Tombs, M.E. Zamora, F.B. Zhou, “Coriolis mass flow metering for three-phase flow: A case study”, Flow Measurement and Instrumentation, 30 (2013), 112–122 | DOI
[12] S. Wang, C. Clark, R. Cheesewright, “Virtual Coriolis flow meter: a tool for simulation and design”, Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 220:6 (2006), 817–835 | DOI
[13] C. Stack, R. Garnett, G. Pawlas, “A finite element for the vibration analysis of a fluid-conveying Timoshenko beam”, 34th Structures, Structural Dynamics and Materials Conference, 1993, 1552–1562 | DOI
[14] R. van Hout, L. Shemer, D. Barnea, “Evolution of hydrodynamic and statistical parameters of gas-liquid slug flow along inclined pipes”, Chemical Engineering Science, 58:1 (2003), 115–133 | DOI | MR
[15] Y. Taitel, D. Barnea, “Hydrodynamic Models Based on Flow Patterns”, Encyclopedia of Two-Phase Heat Transfer and Flow I, 2015, 23–99 | DOI
[16] A. Belhadj, R. Cheesewright, C. Clark, “The simulation of Coriolis meter response to pulsating flow using a general purpose F. E. code”, Journal of fluids and structures, 14:5 (2000), 613–634 | DOI