@article{VYURM_2019_11_3_a0,
author = {A. I. Barsukov and M. Yu. Glazkova and V. I. Ryazhskikh and S. S. Sumera},
title = {Commutativity of spectral divisors of quadratic pencils},
journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matematika, mehanika, fizika},
pages = {5--11},
year = {2019},
volume = {11},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VYURM_2019_11_3_a0/}
}
TY - JOUR AU - A. I. Barsukov AU - M. Yu. Glazkova AU - V. I. Ryazhskikh AU - S. S. Sumera TI - Commutativity of spectral divisors of quadratic pencils JO - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika PY - 2019 SP - 5 EP - 11 VL - 11 IS - 3 UR - http://geodesic.mathdoc.fr/item/VYURM_2019_11_3_a0/ LA - ru ID - VYURM_2019_11_3_a0 ER -
%0 Journal Article %A A. I. Barsukov %A M. Yu. Glazkova %A V. I. Ryazhskikh %A S. S. Sumera %T Commutativity of spectral divisors of quadratic pencils %J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika %D 2019 %P 5-11 %V 11 %N 3 %U http://geodesic.mathdoc.fr/item/VYURM_2019_11_3_a0/ %G ru %F VYURM_2019_11_3_a0
A. I. Barsukov; M. Yu. Glazkova; V. I. Ryazhskikh; S. S. Sumera. Commutativity of spectral divisors of quadratic pencils. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 11 (2019) no. 3, pp. 5-11. http://geodesic.mathdoc.fr/item/VYURM_2019_11_3_a0/
[1] I. Gohberg, P. Lancaster, L. Rodman, Matrix Polynomials, Society for Industrial and Applied Mathematics, Philadelphia, PA, USA, 2009, 409 pp. | MR | Zbl
[2] A.S. Markus, Introduction to the Spectral Theory of Polynomial Operator Pencils, American Mathematical Society, Providence, Rhode Island, 1988, 250 pp. | MR | Zbl
[3] P. Lancaster, F. Tisseur, Hermitian quadratic matrix polynomials: Solvents and inverse problems, MIMS EPrint: 2010.10, , Manchester Institute for Mathematical Sciences, University of Manchester, UK, 2010, 10 pp. http://eprints.ma.man.ac.uk/1390/1/covered/MIMS_ep2010_10.pdf
[4] Barsukov A.I., “About an inverse problem for matrix pencils with Hermitian coefficients”, Proceedings of Voronezh State University. Series: Physics. Mathematics, 2016, no. 4, 72–82 (in Russ.) | Zbl
[5] M.T. Chu, “Inverse eigenvalue problems”, SIAM Rev., 40:1 (1998), 1–39 | DOI | MR | Zbl
[6] S. Timoshenko, D.H. Young, W. Weaver Jr., Vibration Problems in Engineering, fourth ed., Wiley, Chichester, 1974, 538 pp.
[7] G.M.L. Gladwell, Inverse problems in vibrations, Martinus Nijhoff Publishers, Dordrecht–Boston–Lancaster, 1986, 400 pp. | MR