The Barenblatt–Zheltov–Kochina equation with boundary Neumann condition and multipoint initial-final value condition
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 11 (2019) no. 2, pp. 14-19 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The article is devoted to the study of the unique solvability of the Barenblatt–Zheltov–Kochina equation, equipped with the Neumann boundary condition and a multipoint initial-final value condition. This equation is degenerate or, in other words, it belongs to the Sobolev type equations. To study this equation, the authors used the methods of the theory of degenerate operator semigroups, created by Prof. G.A. Sviridyuk, and further developed by him and his students. We would also like to note that the equation under study is supplied with a multipoint initial-final value condition, which is not just a generalization of the Cauchy problem for the Sobolev type equations. This condition makes it possible to avoid checking the consistency of the initial data when finding a solution.
Keywords: Barenblatt–Zheltov–Kochina equation, multipoint initial-final value condition, unique solvability.
Mots-clés : Neumann condition
@article{VYURM_2019_11_2_a1,
     author = {L. A. Kovaleva and E. A. Soldatova and S. A. Zagrebina},
     title = {The {Barenblatt{\textendash}Zheltov{\textendash}Kochina} equation with boundary {Neumann} condition and multipoint initial-final value condition},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matematika, mehanika, fizika},
     pages = {14--19},
     year = {2019},
     volume = {11},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VYURM_2019_11_2_a1/}
}
TY  - JOUR
AU  - L. A. Kovaleva
AU  - E. A. Soldatova
AU  - S. A. Zagrebina
TI  - The Barenblatt–Zheltov–Kochina equation with boundary Neumann condition and multipoint initial-final value condition
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
PY  - 2019
SP  - 14
EP  - 19
VL  - 11
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VYURM_2019_11_2_a1/
LA  - en
ID  - VYURM_2019_11_2_a1
ER  - 
%0 Journal Article
%A L. A. Kovaleva
%A E. A. Soldatova
%A S. A. Zagrebina
%T The Barenblatt–Zheltov–Kochina equation with boundary Neumann condition and multipoint initial-final value condition
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
%D 2019
%P 14-19
%V 11
%N 2
%U http://geodesic.mathdoc.fr/item/VYURM_2019_11_2_a1/
%G en
%F VYURM_2019_11_2_a1
L. A. Kovaleva; E. A. Soldatova; S. A. Zagrebina. The Barenblatt–Zheltov–Kochina equation with boundary Neumann condition and multipoint initial-final value condition. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 11 (2019) no. 2, pp. 14-19. http://geodesic.mathdoc.fr/item/VYURM_2019_11_2_a1/

[1] Sviridyuk G.A., “On the general theory of operator semigroups”, Russian Mathematical Surveys, 49:4 (1994), 45-74 | DOI | MR | Zbl

[2] Zagrebina S.A., “The Multipoint Initial-finish Problem for Hoff Linear Model”, Bulletin of the South Ural State University. Series Mathematical Modelling, Programming Computer Software, 5 (264):11 (2012), 4–12 (in Russ.) | Zbl

[3] Zagrebina S.A., “The initial-finite problems for nonclassical models of mathematical physics”, Bulletin of the South Ural State University. Series: Mathematical Modelling, Programming and Computer Software, 6:2 (2013), 5–24 (in Russ.) | MR | Zbl

[4] Sviridyuk G.A., Shemetova V.V., “The phase space of a nonclassical model”, Russian Mathematics (Izvestiya VUZ. Matematika), 49:11 (2005), 44–49 | MR | Zbl

[5] Kazak V. O., Investigation of phase spaces of a class of semilinear Sobolev type equations, Cand. phys. and math. sci. diss., Chelyabinsk, 2005, 99 pp. (in Russ.)

[6] Barenblatt G.I., Zheltov Iu.P., Kochina I.N., “Basic concepts in the theory of seepage of homogeneous liquids in fissured rocks [strata]”, Journal of Applied Mathematics and Mechanics, 24:5 (1960), 1286–1303 | DOI | MR | Zbl

[7] T.W. Ting, “Certain non-steady flows of second-order fluids”, Archive for Rational Mechanics and Analysis, 14:1 (1963), 1–26 | DOI | MR | Zbl

[8] P.J. Chen, M.E. Gurtin, “On a Theory of Heat Conduction Involving Two Temperatures”, Journal of Applied Mathematics and Physics (ZAMP), 19:4 (1968), 614–627 | DOI | Zbl

[9] M. Hallaire, “On a theory of moisture-transfer”, Inst. Rech. Agronom., 1964, no. 3, 60–72