Mots-clés : Neumann condition
@article{VYURM_2019_11_2_a1,
author = {L. A. Kovaleva and E. A. Soldatova and S. A. Zagrebina},
title = {The {Barenblatt{\textendash}Zheltov{\textendash}Kochina} equation with boundary {Neumann} condition and multipoint initial-final value condition},
journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matematika, mehanika, fizika},
pages = {14--19},
year = {2019},
volume = {11},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/VYURM_2019_11_2_a1/}
}
TY - JOUR AU - L. A. Kovaleva AU - E. A. Soldatova AU - S. A. Zagrebina TI - The Barenblatt–Zheltov–Kochina equation with boundary Neumann condition and multipoint initial-final value condition JO - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika PY - 2019 SP - 14 EP - 19 VL - 11 IS - 2 UR - http://geodesic.mathdoc.fr/item/VYURM_2019_11_2_a1/ LA - en ID - VYURM_2019_11_2_a1 ER -
%0 Journal Article %A L. A. Kovaleva %A E. A. Soldatova %A S. A. Zagrebina %T The Barenblatt–Zheltov–Kochina equation with boundary Neumann condition and multipoint initial-final value condition %J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika %D 2019 %P 14-19 %V 11 %N 2 %U http://geodesic.mathdoc.fr/item/VYURM_2019_11_2_a1/ %G en %F VYURM_2019_11_2_a1
L. A. Kovaleva; E. A. Soldatova; S. A. Zagrebina. The Barenblatt–Zheltov–Kochina equation with boundary Neumann condition and multipoint initial-final value condition. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 11 (2019) no. 2, pp. 14-19. http://geodesic.mathdoc.fr/item/VYURM_2019_11_2_a1/
[1] Sviridyuk G.A., “On the general theory of operator semigroups”, Russian Mathematical Surveys, 49:4 (1994), 45-74 | DOI | MR | Zbl
[2] Zagrebina S.A., “The Multipoint Initial-finish Problem for Hoff Linear Model”, Bulletin of the South Ural State University. Series Mathematical Modelling, Programming Computer Software, 5 (264):11 (2012), 4–12 (in Russ.) | Zbl
[3] Zagrebina S.A., “The initial-finite problems for nonclassical models of mathematical physics”, Bulletin of the South Ural State University. Series: Mathematical Modelling, Programming and Computer Software, 6:2 (2013), 5–24 (in Russ.) | MR | Zbl
[4] Sviridyuk G.A., Shemetova V.V., “The phase space of a nonclassical model”, Russian Mathematics (Izvestiya VUZ. Matematika), 49:11 (2005), 44–49 | MR | Zbl
[5] Kazak V. O., Investigation of phase spaces of a class of semilinear Sobolev type equations, Cand. phys. and math. sci. diss., Chelyabinsk, 2005, 99 pp. (in Russ.)
[6] Barenblatt G.I., Zheltov Iu.P., Kochina I.N., “Basic concepts in the theory of seepage of homogeneous liquids in fissured rocks [strata]”, Journal of Applied Mathematics and Mechanics, 24:5 (1960), 1286–1303 | DOI | MR | Zbl
[7] T.W. Ting, “Certain non-steady flows of second-order fluids”, Archive for Rational Mechanics and Analysis, 14:1 (1963), 1–26 | DOI | MR | Zbl
[8] P.J. Chen, M.E. Gurtin, “On a Theory of Heat Conduction Involving Two Temperatures”, Journal of Applied Mathematics and Physics (ZAMP), 19:4 (1968), 614–627 | DOI | Zbl
[9] M. Hallaire, “On a theory of moisture-transfer”, Inst. Rech. Agronom., 1964, no. 3, 60–72