@article{VYURM_2019_11_2_a0,
author = {O. L. Boziev},
title = {On weak solutions of loaded hyperbolic equation with homogeneous boundary conditions},
journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matematika, mehanika, fizika},
pages = {5--13},
year = {2019},
volume = {11},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VYURM_2019_11_2_a0/}
}
TY - JOUR AU - O. L. Boziev TI - On weak solutions of loaded hyperbolic equation with homogeneous boundary conditions JO - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika PY - 2019 SP - 5 EP - 13 VL - 11 IS - 2 UR - http://geodesic.mathdoc.fr/item/VYURM_2019_11_2_a0/ LA - ru ID - VYURM_2019_11_2_a0 ER -
%0 Journal Article %A O. L. Boziev %T On weak solutions of loaded hyperbolic equation with homogeneous boundary conditions %J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika %D 2019 %P 5-13 %V 11 %N 2 %U http://geodesic.mathdoc.fr/item/VYURM_2019_11_2_a0/ %G ru %F VYURM_2019_11_2_a0
O. L. Boziev. On weak solutions of loaded hyperbolic equation with homogeneous boundary conditions. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 11 (2019) no. 2, pp. 5-13. http://geodesic.mathdoc.fr/item/VYURM_2019_11_2_a0/
[1] Boziev O. L., “Solution of nonlinear hyperbolic equations by an approximate analytical method”, Tomsk State University Journal of Mathematics and Mechanics, 2018, no. 51, 5–14 (in Russ.) | DOI | MR
[2] Boziev O. L., “Approximation of nonlinear parabolic equations solutions by solutions of associated loaded equations”, Journal Nonlinear World, 16:4 (2018), 3–10 (in Russ.)
[3] Filatov A. N., Sharova L. V., Integral inequalities and the theory of nonlinear oscillations, Nauka Publ., M., 1976, 152 pp. (in Russ.)
[4] Boziev O. L., Izvestiya Kabardino-Balkarskogo nauchnogo tsentra RAN, 2010, no. 2(34), 106–110 (in Russ.)
[5] Andreev V. K., “On Inequalities of the Friedrichs type for Combined Domains”, J. Sib. Fed. Univ. Math. Phys., 2:2 (2009), 146–157 (in Russ.)
[6] Lions J. L., Quelques methodes de resolution des problemes aux limites non lineaires, Dunod, Gauthier-Villars, Paris, 1969, 554 pp. | MR | Zbl