Molecular dynamics simulation of carbon clusterization under martensite tempering
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 11 (2019) no. 1, pp. 67-74 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Further improvement of the properties of steel is impossible without understanding of the atomic-level processes that take place at the different stages of heat treatment. In this work a simulation of iron-carbon martensite was performed using the method of molecular dynamics with interatomic potential based on the embedded atom model (EAM). The observed diffusion of carbon on octahedral interstices at high temperatures (at several hundreds of $^\circ$C) causes the formation of short-range ordering of C atoms by way of periodical plain clusters divided by lattice regions, which almost do not contain carbon. We found that the cluster regions are orientated relative to iron lattice with (102) indices, what is consistent with the results of the experimental studies of the structures produced during martensite tempering at the stage of two-phase decomposition. The atomistic simulations results show that carbon clusterization causes the increasing of the lattice parameters relation c/a, both in the lattice regions where clusters are formed, and in the zones which do not contain any carbon atoms. The last fact is explained due to necessity of crystallographic coupling of these two zones. The thickness of the clusters turned out to equal 17 Å, and that of the regions not filled with carbon — 30 Å. During the simulation the total energy of modeling system decreases, and that can be considered as the reaction driving force with the value of 453,6 J/mole, which shows a qualitative agreement with other works.
Mots-clés : martensite
Keywords: steel tempering, two-phase decomposition, molecular dynamics.
@article{VYURM_2019_11_1_a8,
     author = {P. V. Chirkov and A. A. Mirzoev and D. A. Mirzaev},
     title = {Molecular dynamics simulation of carbon clusterization under martensite tempering},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matematika, mehanika, fizika},
     pages = {67--74},
     year = {2019},
     volume = {11},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VYURM_2019_11_1_a8/}
}
TY  - JOUR
AU  - P. V. Chirkov
AU  - A. A. Mirzoev
AU  - D. A. Mirzaev
TI  - Molecular dynamics simulation of carbon clusterization under martensite tempering
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
PY  - 2019
SP  - 67
EP  - 74
VL  - 11
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VYURM_2019_11_1_a8/
LA  - ru
ID  - VYURM_2019_11_1_a8
ER  - 
%0 Journal Article
%A P. V. Chirkov
%A A. A. Mirzoev
%A D. A. Mirzaev
%T Molecular dynamics simulation of carbon clusterization under martensite tempering
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
%D 2019
%P 67-74
%V 11
%N 1
%U http://geodesic.mathdoc.fr/item/VYURM_2019_11_1_a8/
%G ru
%F VYURM_2019_11_1_a8
P. V. Chirkov; A. A. Mirzoev; D. A. Mirzaev. Molecular dynamics simulation of carbon clusterization under martensite tempering. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 11 (2019) no. 1, pp. 67-74. http://geodesic.mathdoc.fr/item/VYURM_2019_11_1_a8/

[1] G. Krauss, Steels: processing, structure, and performance, ASM Int., Ohio, 2015, 651 pp.

[2] G.V. Kurdumoff, E.G. Kaminsky, “X-ray studies of the structure of quenched carbon steel”, Nature, 122 (1928), 475–476 | DOI

[3] C. Zener, “Theory of strain interaction of solute atoms”, Physical Review, 74:6 (1948), 639 | DOI | Zbl

[4] Khachaturyan A.G., Shatalov G.A., “On the theory of carbon ordering in the martensite crystal”, Fizika metallov i metallovedenie, 32:1 (1971), 5–13 (in Russ.) | Zbl

[5] Khachaturyan A.G., “Carbon in steel matertensite”, Imperfections of crystal structure and martensitic transitions, Nauka Publ., M., 1972, 34–45 (in Russ.)

[6] Usikov M.P., Ikonnikov V.I., Utevskiy L.M., “Electron diffraction investigations of initial stages of martensite decomposition”, Fizika metallov i metallovedenie, 40:5 (1975), 1026–1031 (in Russ.)

[7] Usikov M.P., Khachaturyan A.G., “Structural transformations at the low-temperature tempering of carbon martensite”, Fizika metallov i metallovedenie, 43:3 (1977), 554–561 (in Russ.)

[8] B.P.J. Sandvik, C.M. Wayman, “Direct observations of carbon clusters in a high-carbon martensitic steel”, Metallography, 16:4 (1983), 429–447 | DOI

[9] S. Nagakura, Y. Hirotsu, M. Kusunoki et al., “Crystallographic study of the tempering of martensitic carbon steel by electron microscopy and diffraction”, Metallurgical and Materials Transactions A, 14:6 (1983), 1025–1031 | DOI

[10] K. Han, M.J. Van Genderen, A. Bottger et al., “Initial stages of Fe-C martensite decomposition”, Philosophical Magazine A, 81:3 (2001), 741–757 | DOI

[11] S. Plimton, “Fast parallel algorithm for short range molecular dynamics”, Journal of Computational Physics, 117:1 (1995), 1–19 | DOI

[12] T. Lau, C.J.F. Forst, “Many-body potential for point defect clusters in Fe-C alloys”, Phys. Rev. Lett., 98:21 (2007), 215501 | DOI

[13] Chirkov P.V., Mirzoev A.A., Mirzaev D.A., “Tetragonality and the distribution of carbon atoms in the Fe-C martensite: molecular-dynamics simulation”, The Physics of Metals and Metallography, 117:1 (2016), 34–41 | DOI | DOI

[14] W.G Hoover, “Canonical dynamics: Equilibrium phase-space distributions”, Physical Review A, 31:3 (1985), 1695–1697 | DOI

[15] S. Nose, “Constant-temperature molecular dynamics.”, Journal of Physics: Condensed Matter, 2, Supplement (1990), 115–119 | DOI | MR

[16] G.B. Olson, W.S. Owen, Martensite, a tribute to Morris Cohen, Tech. Rep., ASM International, 1992, 400 pp.

[17] C.W. Sinclair, M. Perez, R.G.A. Veiga, A. Weck, “Molecular dynamics study of the ordering of carbon in highly supersaturated $\alpha$-Fe”, Physical Review B, 81:22 (2010), 224204 | DOI

[18] L. Cheng, C.M. Brakman, B.M. Korevaar, E.J. Mittemeijer, “The tempering of iron-carbon martensite; dilatometric and calorimetric analysis”, Metallurgical Transactions A, 19:10 (1988), 2415–2426 | DOI

[19] P. Maugis, F. Danoix, H. Zapolsky et al., “Temperature hysteresis of the order-disorder transition in carbon-supersaturated $\alpha$-Fe”, Physical Review B, 96:21 (2017), 214104 | DOI