Control of composite nonlinear deformation by local curvature of yarns
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 11 (2019) no. 1, pp. 43-49 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Using the refined theory of dry bundles, we analyzed the curvature (length diversity) of yarns in the fabric composite for obtaining the maximum effect of pseudo-ductility (constant yield stresses during the deformation). Because of length diversity, yarns destruction happens consequently, starting with the straight yarns and ending with the most curved ones. The polymer matrix ensures a monolithic structure and high damping of the oscillations due to the intensification of matrix shears during tension/compression of the composite. To simulate an ideal elastoplastic stress-strain diagram of the composite, we formulated the law of changes in fiber lengths, the mechanical properties of which were considered to be the same. To study the technological possibilities of the local curvatures of yarns in fabric preforms, we performed experiments using the indenting method and arrays of conical and flat needles. We showed that conical needles allow us to obtain simultaneous curvature of warp and weft yarns to the same extent. The needle spacing controls the ratio of straight and curved yarns; so, by changing the spacing we can bring this ratio closer to the value required for getting the needed length of the yield plateau. In the case of flat needles with various orientation to the warp yarns, we can obtain anisotropic yarns curvature (of only one yarns family, for example). For experimental deformation of the fabrics with locally curved yarns we used aramid fabrics of plain weave and carbon fabrics of twill weave.
Keywords: pseudo-ductility, curvature of yarns, dry bundlestheory
Mots-clés : fabric composite, indentation.
@article{VYURM_2019_11_1_a5,
     author = {S. B. Sapozhnikov and A. V. Kheruvimov and A. S. Khoruzhiy},
     title = {Control of composite nonlinear deformation by local curvature of yarns},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matematika, mehanika, fizika},
     pages = {43--49},
     year = {2019},
     volume = {11},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VYURM_2019_11_1_a5/}
}
TY  - JOUR
AU  - S. B. Sapozhnikov
AU  - A. V. Kheruvimov
AU  - A. S. Khoruzhiy
TI  - Control of composite nonlinear deformation by local curvature of yarns
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
PY  - 2019
SP  - 43
EP  - 49
VL  - 11
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VYURM_2019_11_1_a5/
LA  - en
ID  - VYURM_2019_11_1_a5
ER  - 
%0 Journal Article
%A S. B. Sapozhnikov
%A A. V. Kheruvimov
%A A. S. Khoruzhiy
%T Control of composite nonlinear deformation by local curvature of yarns
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
%D 2019
%P 43-49
%V 11
%N 1
%U http://geodesic.mathdoc.fr/item/VYURM_2019_11_1_a5/
%G en
%F VYURM_2019_11_1_a5
S. B. Sapozhnikov; A. V. Kheruvimov; A. S. Khoruzhiy. Control of composite nonlinear deformation by local curvature of yarns. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 11 (2019) no. 1, pp. 43-49. http://geodesic.mathdoc.fr/item/VYURM_2019_11_1_a5/

[1] I.M. Daniel, O. Ishai, Engineering mechanics of composite materials, Oxford university press, 2006, 432 pp.

[2] R.F. Gibson, Principles of composite materials mechanics, CRC Press, 2007, 579 pp.

[3] A.S. Kaddour, M.J. Hinton, S. Li, P.A. Smith, “Damage prediction in polymeric composites: Up-date of Part (A) of the Third World-Wide Failure Exercise (WWFE-III)”, Transactions of 18th International Conference on Composite Materials, QinetiQ Ltd, South Korea, 2011, 5 pp. (accessed 12.12.2018) https://www.iccm-central.org/Proceedings/ICCM18proceedings/data/2.

[4] S. Yan, X. Zeng, A. Long, “Experimental assessment of the mechanical behaviour of 3D woven composite T-joints”, Composites part B: Engineering, 154 (2018), 108–113 | DOI

[5] G. Kretzis, “A review of the tensile, compressive, flexural and shear properties of hybrid fibre re-inforced plastics”, Composites, 18:1 (1987), 13–23 | DOI

[6] P.W. Manders, M.G. Bader, “The strength of hybrid glass/carbon fibre composites. Part 1. Failure strain enhancement and failure mode”, Journal of Material Science, 16:8 (1981), 2233–2245 | DOI

[7] Y. Swolfs, L. Gorbatikh, I. Verpoest, “Fibre hybridisation in polymer composites: a review”, Composites part A: Applied Science and Manufacturing, 67 (2014), 181–200 | DOI

[8] Sapozhnikov S.B., Defects and strength of reinforced plastics, Izdatel'stvo Chelyabinskogo gosudarstvennogo tekhnicheskogo universiteta Publ., Chelyabinsk, 1994, 161 pp. (in Russ.)

[9] J. Fuller, M.R. Wisnom, “Damage suppression in thin ply angle-ply carbon/epoxy laminates”, Transactions of 19th International Conference on Composite Materials (ICCM19) (Montreal, July 2013), 8 pp.

[10] G. Czél, M.R. Wisnom, “Demonstration of pseudo-ductility in high performance glass/epoxy composites by hybridisation with thin-ply carbon prepreg”, Composites part A: Applied Science and Manufacturing, 52 (2013), 23–30 | DOI

[11] R.S. Sandhu, “Nonlinear response of unidirectional and angle-ply laminates”, 15th Structural Dynamics and Materials Conference (Las Vegas, NV, U.S.A., 1974) | DOI

[12] E.J. Barbero, Introduction to Composite Materials Design, CRC Press, Boca Raton, 2018, 525 pp. (accessed 24.01.2019) http://barbero.cadec-online.com/icmd

[13] Skudra A.M., Bulavs F.Ya., Strength of reinforced plastics, Khimiya Publ., M., 1982, 213 pp. (in Russ.)

[14] (accessed 12.12.2018) http://www.aramid.ru/ru

[15] H.N. Yu, M.L. Longana, M. Jalalvand et al., “Pseudoductility in intermingled carbon/glass hybrid composites with highly aligned discontinuous fibres”, Composites part A: Applied Science and Manufacturing, 73 (2015), 35–44 | DOI