On calculation of eigenvalues and eigenfunctions of a discrete operator with a nuclear resolvent perturbed by a bounded operator
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 11 (2019) no. 1, pp. 16-23 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The problem of calculating eigenvalues and eigenfunctions of a perturbed linear self-adjoint operator with a nuclear resolvent, perturbed by a bounded operator operating in a separable Hilbert space, is being considered. In order to solve the problem, the method of regularized traces proposed by V.A. Sadovnichy and V.V. Dubrovsky and developed by their followers is used. The classical method of regularized traces for enhancement of calculations’ accuracy assumes calculation of several terms of a series. The complexity of calculation of each subsequent term of a series non-linearly increases. Alteration of the classical method, which is proposed in this work, leads to another series, the rate of convergence of which is significantly higher, which allows decreasing the number of terms of the series that are used for calculation. Developing the proposed method, there are formulas for calculation of Fourier coefficients for expansion of perturbed eigenfunctions in a series by non-perturbed ones provided in the article. Inverse Vandermonde matrix is used for calculation of first eigenfunctions. Assessments of series remainders are given.
Keywords: eigenvalues, eigenfunctions, kernel operator, perturbed operator.
@article{VYURM_2019_11_1_a2,
     author = {A. I. Sedov},
     title = {On calculation of eigenvalues and eigenfunctions of a discrete operator with a nuclear resolvent perturbed by a bounded operator},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matematika, mehanika, fizika},
     pages = {16--23},
     year = {2019},
     volume = {11},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VYURM_2019_11_1_a2/}
}
TY  - JOUR
AU  - A. I. Sedov
TI  - On calculation of eigenvalues and eigenfunctions of a discrete operator with a nuclear resolvent perturbed by a bounded operator
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
PY  - 2019
SP  - 16
EP  - 23
VL  - 11
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VYURM_2019_11_1_a2/
LA  - ru
ID  - VYURM_2019_11_1_a2
ER  - 
%0 Journal Article
%A A. I. Sedov
%T On calculation of eigenvalues and eigenfunctions of a discrete operator with a nuclear resolvent perturbed by a bounded operator
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
%D 2019
%P 16-23
%V 11
%N 1
%U http://geodesic.mathdoc.fr/item/VYURM_2019_11_1_a2/
%G ru
%F VYURM_2019_11_1_a2
A. I. Sedov. On calculation of eigenvalues and eigenfunctions of a discrete operator with a nuclear resolvent perturbed by a bounded operator. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 11 (2019) no. 1, pp. 16-23. http://geodesic.mathdoc.fr/item/VYURM_2019_11_1_a2/

[1] KadchenkoI S.I., Kinzina I., “Computation of eigenvalues of perturbed discrete semibounded operators”, Computational Mathematics and Mathematical Physics, 46:7 (2006), 1200–1206 | DOI | MR

[2] Dubrovskiy V.V., Sadovnichiy V.A., “To the substantiation of the method of calculating the eigenvalues of a discrete operator using regularized traces”, Uspekhi matematicheskikh nauk, 45:4(274), Joint sessions of the seminar I.G. Petrovsky on differential equations and mathematical problems of physics and the Moscow Mathematical Society (thirteenth session, February 2–5, 1990) (1990), 120 (in Russ.) | Zbl

[3] Sadovnichiy V.A., Dubrovskiy V.V., “Remark on a new method of calculation eigenvalues and eigenfunctions for discrete operators”, Proc. the seminar named after I.G. Petrovsky, 17, 1994, 244–248 (in Russ.) | Zbl

[4] Dubrovskiy V.V., Kadchenko S.I., Kravchenko V.F., Sadovnichiy V.A., “Calculation of the first eigenvalues of the Orr–Sommerfeld boundary value problem using the theory of regularized traces”, Elektromagnitnye volny i elektronnye sistemy, 2:6 (1997), 13–19 (in Russ.)

[5] Dubrovskiy V.V., Kadchenko S.I., Kravchenko V.F., Sadovnichiy V.A., “Calculation of the first eigenvalues of a discrete operator”, Elektromagnitnye volny i elektronnye sistemy, 3:2 (1998), 6–8 (in Russ.)

[6] Sadovnichy V.A., Dubrovskii V.V., Kadchenko S.I., Kravchenko V.F., “Computation of the first eigenvalues of a boundary value problem on the hydrodynamic stability of a Poiseuille flow in a circular tube”, Differential Equations, 34:1 (1998), 49–53 | MR

[7] Kadchenko S.I., “New method for calculating the eigenvalues of the Orr–Sommerfeld spectral problem”, Elektromagnitnye volny i elektronnye sistemy, 5:6 (2000), 4–10 (in Russ.)

[8] Dubrovskiy V.V., Kadchenko S.I., Kravchenko V.F., Sadovnichiy V.A., “A new method for the approximate calculation of the first eigenvalues of the Orr–Sommerfeld spectral problem”, Doklady Akademii Nauk, 378:4 (2001), 443–445 (in Russ.)

[9] Kinzina I.I., “Calculation of eigenvalues of a discrete self-adjoint operator perturbed by a bounded operator”, Russian Mathematics (Izvestiya VUZ. Matematika), 52:6 (2008), 13–21 | DOI | MR | Zbl

[10] Sadovnichii V.A., Podolskii V.E., “A regularized trace of a bounded perturbation of an operator with a trace-class resolvent”, Differential Equations, 35:4 (1999), 557–566 | MR | Zbl

[11] Kato T., Perturbation theory for linear operators, Springer-Verlag, 1966, 592 pp. | MR | Zbl