Ab initio simulation of silicon influence on Fe$_3$C carbide formation in BCC-iron
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 10 (2018) no. 4, pp. 78-87 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Results of first-principles simulation of silicon influence of the energy of cementite formation and on partial enthalpy are presented in the article. Simulation was carried out in the frameworks of the Density Functional Theory (DFT) using the full-potential- linearized-augumented-plane-wave method (FP LAPW) taking into account the generalized gradient approximation (GGA’96) in WIEN2k software package. Various concentrations of silicon admixtures in cementite were studied, namely 1,6, 3,2 and 6 at. % for both the position of displacement of iron atom (positions S and G) and of carbon atom (position C). Volumetric optimization of all structures was carried out. Equilibrium parameters of the grid were determined both for cementite without admixtures (a = 4,510; b = 5,063; c = 6,747 Å), and for cementite with silicon, which excellently comply with experimental and theoretical data. Formation energy for concentration of 3,2 at. % in position C turned out to be $-$0,03 electron-volt, which can signify cementite’s stabilization. Though at that, partial enthalpy for all positions of silicon is positive which means that silicon remains in solid solution BCC-Fe, which is in a good compliance with results of other theoretical and experimental works. It was determined that the more is concentration of silicon, the lower is average magnetic moment on iron atoms. Moreover, it became possible to show that energy characteristics of the system significantly depend on the size of a super cell. This effect is connected with the use of periodic boundary conditions during calculations, and shows the presence of interactions between silicon atoms in neighboring super cells.
Keywords: first-principles simulation, silicon, formation energy, partial enthalpy.
Mots-clés : cementite
@article{VYURM_2018_10_4_a8,
     author = {A. V. Verkhovykh and A. A. Mirzoev and D. A. Mirzaev},
     title = {Ab initio simulation of silicon influence on {Fe}$_3${C} carbide formation in {BCC-iron}},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matematika, mehanika, fizika},
     pages = {78--87},
     year = {2018},
     volume = {10},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VYURM_2018_10_4_a8/}
}
TY  - JOUR
AU  - A. V. Verkhovykh
AU  - A. A. Mirzoev
AU  - D. A. Mirzaev
TI  - Ab initio simulation of silicon influence on Fe$_3$C carbide formation in BCC-iron
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
PY  - 2018
SP  - 78
EP  - 87
VL  - 10
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VYURM_2018_10_4_a8/
LA  - ru
ID  - VYURM_2018_10_4_a8
ER  - 
%0 Journal Article
%A A. V. Verkhovykh
%A A. A. Mirzoev
%A D. A. Mirzaev
%T Ab initio simulation of silicon influence on Fe$_3$C carbide formation in BCC-iron
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
%D 2018
%P 78-87
%V 10
%N 4
%U http://geodesic.mathdoc.fr/item/VYURM_2018_10_4_a8/
%G ru
%F VYURM_2018_10_4_a8
A. V. Verkhovykh; A. A. Mirzoev; D. A. Mirzaev. Ab initio simulation of silicon influence on Fe$_3$C carbide formation in BCC-iron. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 10 (2018) no. 4, pp. 78-87. http://geodesic.mathdoc.fr/item/VYURM_2018_10_4_a8/

[1] E.C. Bain, H.W. Paxton, Alloying elements in steel, Amer. Soc. for Metals, Metals Park, Ohio, 1966, 254 pp.

[2] P.D. Deeley, K.J.A. Kundig, H.R. Spendelow, Ferroalloys alloying additives handbook, Shieldalloy Corp., Newfield, N.J., 1981, 127 pp.

[3] Gulyaev A. P., Metal science, Metallurgiya Publ., M., 1986, 541 pp. (in Russ.)

[4] Houdremont Von Ed., Handbuch der Sonderstahlkunde (Manual of special steel customer), Springer, Berlin; Verlag Stahleisen, Düsseldorf, 1956, 874 pp. | DOI

[5] M. Umemoto, Z.G. Liu, K. Masuyama, K. Tsuchiya, “Influence of alloy additions on production and properties of bulk cementite”, Scripta Materialia, 45:4 (2001), 391–397 | DOI

[6] H. Saitoh, K. Ushioda, N. Yoshinaga, W. Yamada, “Influence of substitutional atoms on the solubility limit of carbon in BCC iron”, Scripta Materialia, 65:10 (2011), 887–890 | DOI

[7] Y. Imai, K. Masumoto, M. Sakamoto, “Influence of alloying elements on solubility of carbon and nitrogen in ferrite iron”, Bulletin of the Japan Institute of Metals, 7:3 (1968), 137–152 | DOI

[8] H. Borchers, W. König, “Zementitbildung in Stählen mit niedrigem Kohlenstoffgehalt”, Archiv für das Eisenhüttenwesen, 34:6 (1963), 453–463 | DOI

[9] D.A. Leak, G.M. Leak, “Solubility and Diffusion of Carbon in a Silicon-Iron Alloy”, J. Iron Steel Inst., 189:3 (1958), 256–262

[10] Lyakishev N. P., State diagrams of double metallic systems, v. 1, Mashinostroenie Publ., M., 1996, 991 pp. (in Russ.)

[11] J.H. Jang, I.G. Kim, H.K.D.H. Bhadeshia, “Substitutional solution of silicon in cementite: A first-principles study”, Computational Materials Science, 44:4 (2009), 1319–1326 | DOI

[12] O.Y. Gutina, N.I. Medvedeva, I.R. Shein et al., “Electronic structure and magnetic properties of Fe$_3$C with 2p and 3p impurities”, Physica status solidi (b), 246:9 (2009), 2167–2171 | DOI

[13] C.K. Ande, M.H.F. Sluiter, “First-principles prediction of partitioning of alloying elements between cementite and ferrite”, Acta Materialia, 58:19 (2010), 6276–6281 | DOI

[14] C.K. Ande, M.H.F. Sluiter, “First-principles calculations on stabilization of iron carbides (Fe$_3$C, Fe$_5$C$_2$ and $\eta$-Fe$_2$C) in steels by common alloying elements”, Metallurgical and Materials Transactions A, 43:11 (2012), 4436–4444 | DOI

[15] H. Sawada, K. Kawakami, F. Körmann et al., “Partitioning of Cr and Si between cementite and ferrite derived from first-principles thermodynamics”, Acta Materialia, 102 (2016), 241–250 | DOI

[16] K. Schwarz, P. Blaha, “Solid state calculations using WIEN2k”, Computational Materials Science, 28:2 (2003), 259–273 | DOI

[17] E.J. Fasiska, G.A. Jeffrey, “On the cementite structure”, Acta Crystallographica, 19:3 (1965), 463–471 | DOI

[18] Emsley J., The Elements, Clarendon Press, Oxford, 1991, 251 pp.

[19] I.G. Wood, L.Vočadlo, K.S. Knight, D.P. Dobson et al., “Thermal expansion and crystal structure of cementite, Fe$_3$C, between 4 and 600 K determined by time-of-flight neutron powder diffraction”, Journal of Applied Crystallography, 37:1 (2004), 82–90 | DOI

[20] S.V. Meschel, O.J. Kleppa, “Standard enthalpies of formation of some 3d transition metal carbides by high temperature reaction calorimetry”, Journal of alloys and compounds, 257:1–2 (1997), 227–233 | DOI

[21] A.F. Guillermet, G. Grimvall, “Cohesive properties and vibrational entropy of 3d-transition metal carbides”, Journal of Physics and Chemistry of Solids, 53:1 (1992), 105–125 | DOI

[22] L. Samek, E. De Moor, J. Penning, B.C. De Cooman, “Influence of alloying elements on the kinetics of strain-induced martensitic nucleation in low-alloy, multiphase high-strength steels”, Metallurgical and Materials Transactions A, 37:1 (2006), 109–124 | DOI

[23] C.G. Shull, M.K. Wilkinson, “Neutron diffraction studies of the magnetic structure of alloys of transition elements”, Physical Review, 97:2 (1955), 304–310 | DOI