Mots-clés : cementite
@article{VYURM_2018_10_4_a8,
author = {A. V. Verkhovykh and A. A. Mirzoev and D. A. Mirzaev},
title = {Ab initio simulation of silicon influence on {Fe}$_3${C} carbide formation in {BCC-iron}},
journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matematika, mehanika, fizika},
pages = {78--87},
year = {2018},
volume = {10},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VYURM_2018_10_4_a8/}
}
TY - JOUR AU - A. V. Verkhovykh AU - A. A. Mirzoev AU - D. A. Mirzaev TI - Ab initio simulation of silicon influence on Fe$_3$C carbide formation in BCC-iron JO - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika PY - 2018 SP - 78 EP - 87 VL - 10 IS - 4 UR - http://geodesic.mathdoc.fr/item/VYURM_2018_10_4_a8/ LA - ru ID - VYURM_2018_10_4_a8 ER -
%0 Journal Article %A A. V. Verkhovykh %A A. A. Mirzoev %A D. A. Mirzaev %T Ab initio simulation of silicon influence on Fe$_3$C carbide formation in BCC-iron %J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika %D 2018 %P 78-87 %V 10 %N 4 %U http://geodesic.mathdoc.fr/item/VYURM_2018_10_4_a8/ %G ru %F VYURM_2018_10_4_a8
A. V. Verkhovykh; A. A. Mirzoev; D. A. Mirzaev. Ab initio simulation of silicon influence on Fe$_3$C carbide formation in BCC-iron. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 10 (2018) no. 4, pp. 78-87. http://geodesic.mathdoc.fr/item/VYURM_2018_10_4_a8/
[1] E.C. Bain, H.W. Paxton, Alloying elements in steel, Amer. Soc. for Metals, Metals Park, Ohio, 1966, 254 pp.
[2] P.D. Deeley, K.J.A. Kundig, H.R. Spendelow, Ferroalloys alloying additives handbook, Shieldalloy Corp., Newfield, N.J., 1981, 127 pp.
[3] Gulyaev A. P., Metal science, Metallurgiya Publ., M., 1986, 541 pp. (in Russ.)
[4] Houdremont Von Ed., Handbuch der Sonderstahlkunde (Manual of special steel customer), Springer, Berlin; Verlag Stahleisen, Düsseldorf, 1956, 874 pp. | DOI
[5] M. Umemoto, Z.G. Liu, K. Masuyama, K. Tsuchiya, “Influence of alloy additions on production and properties of bulk cementite”, Scripta Materialia, 45:4 (2001), 391–397 | DOI
[6] H. Saitoh, K. Ushioda, N. Yoshinaga, W. Yamada, “Influence of substitutional atoms on the solubility limit of carbon in BCC iron”, Scripta Materialia, 65:10 (2011), 887–890 | DOI
[7] Y. Imai, K. Masumoto, M. Sakamoto, “Influence of alloying elements on solubility of carbon and nitrogen in ferrite iron”, Bulletin of the Japan Institute of Metals, 7:3 (1968), 137–152 | DOI
[8] H. Borchers, W. König, “Zementitbildung in Stählen mit niedrigem Kohlenstoffgehalt”, Archiv für das Eisenhüttenwesen, 34:6 (1963), 453–463 | DOI
[9] D.A. Leak, G.M. Leak, “Solubility and Diffusion of Carbon in a Silicon-Iron Alloy”, J. Iron Steel Inst., 189:3 (1958), 256–262
[10] Lyakishev N. P., State diagrams of double metallic systems, v. 1, Mashinostroenie Publ., M., 1996, 991 pp. (in Russ.)
[11] J.H. Jang, I.G. Kim, H.K.D.H. Bhadeshia, “Substitutional solution of silicon in cementite: A first-principles study”, Computational Materials Science, 44:4 (2009), 1319–1326 | DOI
[12] O.Y. Gutina, N.I. Medvedeva, I.R. Shein et al., “Electronic structure and magnetic properties of Fe$_3$C with 2p and 3p impurities”, Physica status solidi (b), 246:9 (2009), 2167–2171 | DOI
[13] C.K. Ande, M.H.F. Sluiter, “First-principles prediction of partitioning of alloying elements between cementite and ferrite”, Acta Materialia, 58:19 (2010), 6276–6281 | DOI
[14] C.K. Ande, M.H.F. Sluiter, “First-principles calculations on stabilization of iron carbides (Fe$_3$C, Fe$_5$C$_2$ and $\eta$-Fe$_2$C) in steels by common alloying elements”, Metallurgical and Materials Transactions A, 43:11 (2012), 4436–4444 | DOI
[15] H. Sawada, K. Kawakami, F. Körmann et al., “Partitioning of Cr and Si between cementite and ferrite derived from first-principles thermodynamics”, Acta Materialia, 102 (2016), 241–250 | DOI
[16] K. Schwarz, P. Blaha, “Solid state calculations using WIEN2k”, Computational Materials Science, 28:2 (2003), 259–273 | DOI
[17] E.J. Fasiska, G.A. Jeffrey, “On the cementite structure”, Acta Crystallographica, 19:3 (1965), 463–471 | DOI
[18] Emsley J., The Elements, Clarendon Press, Oxford, 1991, 251 pp.
[19] I.G. Wood, L.Vočadlo, K.S. Knight, D.P. Dobson et al., “Thermal expansion and crystal structure of cementite, Fe$_3$C, between 4 and 600 K determined by time-of-flight neutron powder diffraction”, Journal of Applied Crystallography, 37:1 (2004), 82–90 | DOI
[20] S.V. Meschel, O.J. Kleppa, “Standard enthalpies of formation of some 3d transition metal carbides by high temperature reaction calorimetry”, Journal of alloys and compounds, 257:1–2 (1997), 227–233 | DOI
[21] A.F. Guillermet, G. Grimvall, “Cohesive properties and vibrational entropy of 3d-transition metal carbides”, Journal of Physics and Chemistry of Solids, 53:1 (1992), 105–125 | DOI
[22] L. Samek, E. De Moor, J. Penning, B.C. De Cooman, “Influence of alloying elements on the kinetics of strain-induced martensitic nucleation in low-alloy, multiphase high-strength steels”, Metallurgical and Materials Transactions A, 37:1 (2006), 109–124 | DOI
[23] C.G. Shull, M.K. Wilkinson, “Neutron diffraction studies of the magnetic structure of alloys of transition elements”, Physical Review, 97:2 (1955), 304–310 | DOI