Mots-clés : negative Poisson's ratio.
@article{VYURM_2018_10_4_a7,
author = {A. V. Khokhlov},
title = {Behavior types and features of lateral strain and {Poisson's} ratio of isotropic rheonomous materials under creep conditions described by the linear theory of viscoelasticity},
journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matematika, mehanika, fizika},
pages = {65--77},
year = {2018},
volume = {10},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VYURM_2018_10_4_a7/}
}
TY - JOUR AU - A. V. Khokhlov TI - Behavior types and features of lateral strain and Poisson's ratio of isotropic rheonomous materials under creep conditions described by the linear theory of viscoelasticity JO - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika PY - 2018 SP - 65 EP - 77 VL - 10 IS - 4 UR - http://geodesic.mathdoc.fr/item/VYURM_2018_10_4_a7/ LA - ru ID - VYURM_2018_10_4_a7 ER -
%0 Journal Article %A A. V. Khokhlov %T Behavior types and features of lateral strain and Poisson's ratio of isotropic rheonomous materials under creep conditions described by the linear theory of viscoelasticity %J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika %D 2018 %P 65-77 %V 10 %N 4 %U http://geodesic.mathdoc.fr/item/VYURM_2018_10_4_a7/ %G ru %F VYURM_2018_10_4_a7
A. V. Khokhlov. Behavior types and features of lateral strain and Poisson's ratio of isotropic rheonomous materials under creep conditions described by the linear theory of viscoelasticity. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 10 (2018) no. 4, pp. 65-77. http://geodesic.mathdoc.fr/item/VYURM_2018_10_4_a7/
[1] Khokhlov A. V., “Analysis of properties of creep curves generated by the linear viscoelasticity theory under arbitrary loading programs at initial stage”, J. Samara State Tech. Univ., Ser. Phys. Math. Sci., 22:1 (2018), 65–95 (in Russ.) | DOI
[2] Khokhlov A. V., “Two-sided bounds for relaxation modulus in the linear viscoelasticity via relaxation curves at ramp strain histories and identification techniques”, Izvestiya Rossiyskoy akademii nauk. Mekhanika tverdogo tela, 2018, no. 3, 81–104 (in Russ.) | DOI
[3] Khokhlov A. V., “Analysis of creep curves produced by the linear viscoelasticity theory under cyclic stepwise loadings”, J. Samara State Tech. Univ., Ser. Phys. Math. Sci., 21:2 (2017), 326–361 (in Russ.) | DOI | Zbl
[4] Khokhlov A. V., “Long-term strength curves produced by the linear viscoelasticity theory combined with failure criteria accounting for strain history”, Trudy MAI, 2016, no. 91, 1–32 (in Russ.)
[5] Khokhlov A. V., “Asymptotic behavior of creep curves in the Rabotnov nonlinear heredity theory under piecewise constant loadings and memory decay conditions”, Moscow University Mechanics Bulletin, 72:5 (2017), 103–107 | DOI | Zbl
[6] Khokhlov A. V., “Analysis of Creep Curves General Properties under Step Loading Generated by the Rabotnov Nonlinear Relation for Viscoelastic Plastic Materials”, Herald of the Bauman Moscow State Technical University. Series Natural Sciences, 2017, no. 3(72), 93–123 (in Russ.) | DOI
[7] Khokhlov A. V., “Analysis of properties of ramp stress relaxation curves produced by the Rabotnov non-linear hereditary theory”, Mechanics of Composite Materials, 54:4 (2018), 473–486 | DOI
[8] Khokhlov A. V., “Properties of stress-strain curves family generated by the Rabotnov non-linear relation for viscoelastic materials”, Izvestiya Rossiyskoy akademii nauk. Mekhanika tverdogo tela, 2018, no. 6 (in Russ.)
[9] Rabotnov Yu.N., “Equilibrium of elastic medium with heredity”, Prikladnaya matematika i mekhanika, 12:1 (1948), 53–62 (in Russ.) | Zbl
[10] Rabotnov Yu.N., Creep problems in structural members, Nauka Publ., M., 1966, 752 pp. (in Russ.)
[11] Freudental A.M., Geiringer H., The mathematical theories of the inelastic continuum, v. VI, Handbuch der Physik, ed. von S. Flugge, Springer Verl., Berlin a. o., 1958 | MR
[12] Il'yushin A. A., Pobedrya B. E., Fundamentals of the Mathematical Theory of Thermo-viscoelasticity, Nauka Publ., M., 1970, 280 pp. (in Russ.)
[13] Christensen R. M., Theory of viscoelasticity, Acad. Press, N.-Y.–L., 1971, 245 pp.
[14] Rabotnov Yu.N., Elements of hereditary solid mechanics, Mir Publishers, M., 1977, 384 pp.
[15] Aynbinder S. B., Tyunina E. L., Tsirule K. I., Properties of Polymers under various stress states, Khimiya Publ., M., 1981, 232 pp. (in Russ.)
[16] Gol'dman A. Ya., Volumetric deformation of plastics, Mashinostroenie Publ., L., 1984, 232 pp. (in Russ.)
[17] R.S. Lakes, Viscoelastic Materials, Cambridge Univ. Press, Cambridge, 2009, 462 pp.
[18] N.W. Tschoegl, “Time Dependence in Material Properties: An Overview”, Mechanics of Time-Dependent Materials, 1:1 (1997), 3–31 | DOI
[19] N.N. Hilton, “Implications and constraints of time-independent Poisson's Ratios in linear isotropic and anisotropic viscoelasticity”, Journal of elasticity and the physical science of solids, 63:3 (2001), 221–251 | DOI | MR | Zbl
[20] N.W. Tschoegl, W.G. Knauss, I. Emri, “Poisson's ratio in linear viscoelasticity — a critical review”, Mechanics of Time-Dependent Materials, 6:1 (2002), 3–51 | DOI
[21] Lomakin E. V., “Mechanics of media with stress-state dependent properties”, Physical Mesomechanics, 10:5–6 (2007), 255–264 | DOI | Zbl
[22] D.J. O'Brien, N.R. Sottos, S.R. White, “Cure-dependent Viscoelastic Poisson's Ratio of Epoxy”, Experimental mechanics, 47:2 (2007), 237–249 | DOI
[23] D. Tscharnuter, M. Jerabek, Z. Major, R.W. Lang, “Time-dependent Poisson's ratio of polypropylene compounds for various strain histories”, Mechanics of Time-Dependent Materials, 15:1 (2011), 15–28 | DOI | MR
[24] Zhukov A. M., “On Poisson's Ratio in plastic domain”, Izvestiya AN SSSR. Otd. tekhn. Nauk, 1954, no. 12, 86–91 (in Russ.)
[25] Brekhova V. D., “Investigation of the Poisson's ratio of certain crystalline polymers under a constant compressive load”, Polimer mechanics, 1:4 (1965), 23–24 | DOI | Zbl
[26] Dzene I. Ya., Putans A. V., “Poisson's ratio of polyethylene in one-dimensional creep”, Polimer mechanics, 3:5 (1967), 626–627 | DOI
[27] Kalinnikov A. E., Vakhrushev A. V., “Relation between lateral and longitudinal strains in materials with tension-compression asymmetry under uniaxil creep”, Mekhanika kompozitnykh materialov, 1985, no. 2, 351–354 (in Russ.)
[28] Savinykh A. S., Garkushin G. V., Razorenov S. V., Kanel G. I., “Longitudinal and bulk compressibility of soda-lime glass at pressures to 10 GPa”, Technical Physics, 52:3 (2007), 328–332 | DOI
[29] Kozhevnikova M. E., “Plastic Zone Boundary and Poisson's Ratio Depending on Plastic Loosening”, Physical Mesomechanics, 16:2 (2013), 162–169 | DOI
[30] Lomakin E. V., “Non-linear deformation of materials with stress-state dependent properties”, Izvestiya Rossiyskoy akademii nauk. Mekhanika tverdogo tela, 1980, no. 4, 92–99 (in Russ.)
[31] Shcherbak V. V., Gol'dman A. Ya., “Volume changes in dispersely filled composites under creep tests”, Mekhanika kompozitnykh materialov, 1982, no. 3, 549–552 (in Russ.)
[32] S. Ozupek, E.B. Becker, “Constitutive Equations for Solid Propellants”, Journal of Engineering Materials and Technology, 119:2 (1997), 125–132 | DOI
[33] Bykov D. L., Peleshko V. A., “Constitutive Relations for Strain and Failure of Filled Polymer Materials in Dominant Axial Tension Processes under Various Barothermal Conditions”, Mechanics of Solids, 43:6 (2008), 870–891 | DOI
[34] H. Shekhar, A.D. Sahasrabudhe, “Longitudinal Strain Dependent Variation of Poissons Ratio for HTPB Based Solid Rocket Propellants in Uni-axial Tensile Testing”, Propellants, Explosives, Pyrotechnics, 36:6 (2011), 558–563 | DOI
[35] H.R. Cui, G.J. Tang, Z.B. Shen, “Study on viscoelastic Poisson's ratio of solid propellants using digital image correlation method”, Propellants Explosives Pyrotechnics, 41:5 (2016), 835–843 | DOI
[36] Dzene I. Ya., Kregers A. F., Vilks U. K., “Characteristic features of the deformation process on creep and secondary creep of polymers under conditions of uni-axial tension. Part I”, Polimer mechanics, 10:3 (1974), 337–342 | DOI
[37] R. Lakes, “Foam structure with a negative Poisson's ratio”, Science, 235:4792 (1987), 1038–1040 | DOI
[38] E.A. Friis, R.S. Lakes, J.B. Park, “Negative Poisson's ratio polymeric and metallic materials”, Journal of Materials Science, 23:12 (1988), 4406–4414 | DOI
[39] Berlin Al. Al., Rotenburg L., Basert R., “Structure of isotropic materials with a negative Poisson's ratio”, Vysokomolekulyarnye soedineniya B, 33:8 (1991), 619–621 (in Russ.)
[40] Berlin Al. Al., Rotenburg L., Basert R., “Specific features of deformation of non-ordered polymeric and non-polymeric solids”, Vysokomolekulyarnye soedineniya A, 34:7 (1992), 6–32 (in Russ.)
[41] G.W. Milton, “Composite materials with Poisson's ratios close to -1”, Journal of the Mechanics and Physics of Solids, 40:5 (1992), 1105–1137 | DOI | MR | Zbl
[42] R.S. Lakes, K. Elms, “Indentability of Conventional and Negative Poisson's Ratio Foams”, Journal of Composite Materials, 27:12 (1993), 1193–1202 | DOI
[43] B.D. Saddock, K.E. Evans, “Negative Poisson ratios and strain-dependent mechanical properties in arterial prostheses”, Biomaterials, 16:14 (1995), 1109–1115 | DOI
[44] N. Chan, K.E. Evans, “Indentation resilience of conventional and auxetic foams”, Journal of Cellular Plastics, 34:3 (1998), 231–260 | DOI
[45] K.L. Alderson, A. Fitzgerald, K.E. Evans, “The strain dependent indentation resilience of auxetic microporous polyethylene”, Journal of Materials Science, 35:16 (2000), 4039–4047 | DOI
[46] Konyek D. A., Voytsekhovski K. V., Pleskachevskiy Yu. M., Shil'ko S. V., “Materials with negative Poisson's ratio. A review”, Mekhanika kompozitnykh materialov i konstruktsiy, 10:1 (2004), 35–69 (in Russ.)
[47] A.L. Greer, R.S. Lakes, T. Rouxel, G.N. Greaves, “Poisson's ratio and modern materials”, Nature Materials, 10:11 (2011), 823–837 | DOI
[48] A.C. Fischer-Cripps, Nanoindentation, Springer-Verlag, New York, 2002, 197 pp. | DOI
[49] W.C. Oliver, G.M. Pharr, “Measurement of hardness and elastic modulus by instrumented indentation: advances in understanding and refinements to methodology”, Journal of Materials Research, 19:1 (2004), 3–20 | DOI
[50] M. Oyen, “Analytical techniques for indentation of viscoelastic materials”, Philosophical Magazine, 86:33–35 (2006), 5625–5641 | DOI
[51] Golovin Yu.I., Nanoindentation and its capabilities, Mashinostroenie Publ., M., 2009, 311 pp. (in Russ.)