@article{VYURM_2018_10_4_a5,
author = {Yu. M. Kovalev and F. G. Magazov and E. S. Shestakovskaya},
title = {Equilibrium mathematical model of multicomponent heterogeneous media},
journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matematika, mehanika, fizika},
pages = {49--57},
year = {2018},
volume = {10},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VYURM_2018_10_4_a5/}
}
TY - JOUR AU - Yu. M. Kovalev AU - F. G. Magazov AU - E. S. Shestakovskaya TI - Equilibrium mathematical model of multicomponent heterogeneous media JO - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika PY - 2018 SP - 49 EP - 57 VL - 10 IS - 4 UR - http://geodesic.mathdoc.fr/item/VYURM_2018_10_4_a5/ LA - ru ID - VYURM_2018_10_4_a5 ER -
%0 Journal Article %A Yu. M. Kovalev %A F. G. Magazov %A E. S. Shestakovskaya %T Equilibrium mathematical model of multicomponent heterogeneous media %J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika %D 2018 %P 49-57 %V 10 %N 4 %U http://geodesic.mathdoc.fr/item/VYURM_2018_10_4_a5/ %G ru %F VYURM_2018_10_4_a5
Yu. M. Kovalev; F. G. Magazov; E. S. Shestakovskaya. Equilibrium mathematical model of multicomponent heterogeneous media. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 10 (2018) no. 4, pp. 49-57. http://geodesic.mathdoc.fr/item/VYURM_2018_10_4_a5/
[1] Nigmatulin R. I., Fundamentals of mechanics of heterogeneous media, Nauka, M., 1978, 336 pp. (in Russ.)
[2] Kuropatenko V. F., Models of continuum mechanics, Izd-vo Chelyabinskogo gosudarstvennogo universiteta Publ., Chelyabinsk, 2007, 302 pp. (in Russ.)
[3] Rahmatulin H. A., Prikladnaya matematika i mekhanika, 20:27 (1956), 184–195 (in Russ.)
[4] Kraiko A. N., Nigmatulin R. I., Starkov V. K., Sternin L. B., Itogi nauki i tekhniki. Gidromekhanika, 6, 1973, 93–174 (in Russ.)
[5] Yanenko N. N., Soloukhin R. I., Papyrin A. N., Fomin V. M., Supersonic two-phase flows under conditions of high-speed non-equilibrium of particles, Nauka, Sibirskoe otdelenie Publ., Novosibirsk, 1980, 159 pp. (in Russ.)
[6] Kuropatenko V. F., “Model of a multicomponent medium”, Doklady Physics, 50:8 (2005), 423–425 | DOI
[7] Kuropatenko V. F., “New model of continuum mechanics”, Journal of engineering physics and thermophysics, 84:1 (2011), 77–99 | DOI | Zbl
[8] Kovalev Yu. M., Pigasov E. E., “A Mathematical Model of Gas Suspension with Chemical Reactions in the Pair-Interaction Approximation”, Bulletin of the South Ural State University. Series Mathematical Modelling, Programming and Computer Software, 7:3 (2014), 40–49 | DOI | Zbl
[9] Kovalev Yu. M., Kovaleva E. A., “A Mathematical Study of the Conservation Equation for Two-Phase Mixtures”, Bulletin of the South Ural State University. Series Mathematical Modelling, Programming and Computer Software, 7:2 (2014), 29–37 | DOI
[10] Kovalev Yu. M., “Mathematical Modelling of the Thermal Component of the Equation of State of Molecular Crystals”, Bulletin of the South Ural State University. Series Mathematical Modelling, Programming and Computer Software, 6:1 (2013), 34–42
[11] Fortov V. E., Equations of state of matter: from an ideal gas to a quark-gluon plasma, Fizmatlit Publ., M., 2012, 490 pp. (in Russ.)
[12] Khishchenko K. V., Fortov V. E., “Issledovanie uravneniy sostoyaniya materialov pri vysokoy kontsentratsii energii”, Izvestiya Kabardino-Balkarskogo gosudarstvennogo universiteta, 4:1 (2014), 6–16 (in Russ.)
[13] Zel'dovich Ya. B., Rayzer Yu. P., Physics of shock waves and high-temperature hydrodynamic phenomena, Fizmatlit Publ., M., 2008, 652 pp. (in Russ.)
[14] Antonov V. A., Grishin A. M., Kovalev Yu. M., Naymushina L. Yu., Fizika goreniya i vzryva, 29:4 (1993), 115–123 | Zbl
[15] Kuropatenko V. F., Fizika goreniya i vzryva, 25:6 (1989), 112–117 (in Russ.)
[16] Mader C. L., Numerical modeling of detonations, University of California Press, Berkeley–Los Angeles–London, 1979, 485 pp. | DOI | Zbl