Equilibrium mathematical model of multicomponent heterogeneous media
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 10 (2018) no. 4, pp. 49-57 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper, a mathematical model of an equilibrium two-phase mixture is constructed based on the general equations of conservation of heterogeneous multicomponent mixtures. This mathematical model was studied for the presence of hyperbolicity and invariance regarding the Galilean transformation. Hyperbolicity of the mathematical model of the equilibrium two-phase mixture was demonstrated, which proved the possibility of calculating high-speed processes, for example, the processes of initiation of detonation in condensed explosives by strong shock waves. Hyperbolicity of the mathematical model of equilibrium two-phase mixture leads to the fact that velocity of propagation of disturbances (sound velocity) in the mixture is a finite value. This fact is very important in analyzing the processes of the output of initiating shock waves into the detonation regime. The assumption of the equilibrium of the mixture for calculating the initiation of detonation greatly simplifies the general mathematical model of heterogeneous multicomponent mixtures. It is shown that the system of conservation laws in an equilibrium mathematical model of two-phase mixture can be reduced to the system of conservation laws for a mixture, when the closing equations are the equations of state for specific internal energy and phase pressure, as well as the ratios that are usual for heterogeneous mixtures. Within the frameworks of the equilibrium mathematical model of two-phase mixture, justification for the coordination of energy of phase transitions was carried out. It was taken into account that phase transitions in a detonation wave occur at a constant volume. Analysis of the equilibrium mathematical model of two-phase mixture for the presence of invariance regarding the Galileo transformation showed its invariance, which confirms the correctness of the assumptions made in this paper.
Keywords: mathematical model, two-phase mixture, equation of state, high-speed process, shockwave.
@article{VYURM_2018_10_4_a5,
     author = {Yu. M. Kovalev and F. G. Magazov and E. S. Shestakovskaya},
     title = {Equilibrium mathematical model of multicomponent heterogeneous media},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matematika, mehanika, fizika},
     pages = {49--57},
     year = {2018},
     volume = {10},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VYURM_2018_10_4_a5/}
}
TY  - JOUR
AU  - Yu. M. Kovalev
AU  - F. G. Magazov
AU  - E. S. Shestakovskaya
TI  - Equilibrium mathematical model of multicomponent heterogeneous media
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
PY  - 2018
SP  - 49
EP  - 57
VL  - 10
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VYURM_2018_10_4_a5/
LA  - ru
ID  - VYURM_2018_10_4_a5
ER  - 
%0 Journal Article
%A Yu. M. Kovalev
%A F. G. Magazov
%A E. S. Shestakovskaya
%T Equilibrium mathematical model of multicomponent heterogeneous media
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
%D 2018
%P 49-57
%V 10
%N 4
%U http://geodesic.mathdoc.fr/item/VYURM_2018_10_4_a5/
%G ru
%F VYURM_2018_10_4_a5
Yu. M. Kovalev; F. G. Magazov; E. S. Shestakovskaya. Equilibrium mathematical model of multicomponent heterogeneous media. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 10 (2018) no. 4, pp. 49-57. http://geodesic.mathdoc.fr/item/VYURM_2018_10_4_a5/

[1] Nigmatulin R. I., Fundamentals of mechanics of heterogeneous media, Nauka, M., 1978, 336 pp. (in Russ.)

[2] Kuropatenko V. F., Models of continuum mechanics, Izd-vo Chelyabinskogo gosudarstvennogo universiteta Publ., Chelyabinsk, 2007, 302 pp. (in Russ.)

[3] Rahmatulin H. A., Prikladnaya matematika i mekhanika, 20:27 (1956), 184–195 (in Russ.)

[4] Kraiko A. N., Nigmatulin R. I., Starkov V. K., Sternin L. B., Itogi nauki i tekhniki. Gidromekhanika, 6, 1973, 93–174 (in Russ.)

[5] Yanenko N. N., Soloukhin R. I., Papyrin A. N., Fomin V. M., Supersonic two-phase flows under conditions of high-speed non-equilibrium of particles, Nauka, Sibirskoe otdelenie Publ., Novosibirsk, 1980, 159 pp. (in Russ.)

[6] Kuropatenko V. F., “Model of a multicomponent medium”, Doklady Physics, 50:8 (2005), 423–425 | DOI

[7] Kuropatenko V. F., “New model of continuum mechanics”, Journal of engineering physics and thermophysics, 84:1 (2011), 77–99 | DOI | Zbl

[8] Kovalev Yu. M., Pigasov E. E., “A Mathematical Model of Gas Suspension with Chemical Reactions in the Pair-Interaction Approximation”, Bulletin of the South Ural State University. Series Mathematical Modelling, Programming and Computer Software, 7:3 (2014), 40–49 | DOI | Zbl

[9] Kovalev Yu. M., Kovaleva E. A., “A Mathematical Study of the Conservation Equation for Two-Phase Mixtures”, Bulletin of the South Ural State University. Series Mathematical Modelling, Programming and Computer Software, 7:2 (2014), 29–37 | DOI

[10] Kovalev Yu. M., “Mathematical Modelling of the Thermal Component of the Equation of State of Molecular Crystals”, Bulletin of the South Ural State University. Series Mathematical Modelling, Programming and Computer Software, 6:1 (2013), 34–42

[11] Fortov V. E., Equations of state of matter: from an ideal gas to a quark-gluon plasma, Fizmatlit Publ., M., 2012, 490 pp. (in Russ.)

[12] Khishchenko K. V., Fortov V. E., “Issledovanie uravneniy sostoyaniya materialov pri vysokoy kontsentratsii energii”, Izvestiya Kabardino-Balkarskogo gosudarstvennogo universiteta, 4:1 (2014), 6–16 (in Russ.)

[13] Zel'dovich Ya. B., Rayzer Yu. P., Physics of shock waves and high-temperature hydrodynamic phenomena, Fizmatlit Publ., M., 2008, 652 pp. (in Russ.)

[14] Antonov V. A., Grishin A. M., Kovalev Yu. M., Naymushina L. Yu., Fizika goreniya i vzryva, 29:4 (1993), 115–123 | Zbl

[15] Kuropatenko V. F., Fizika goreniya i vzryva, 25:6 (1989), 112–117 (in Russ.)

[16] Mader C. L., Numerical modeling of detonations, University of California Press, Berkeley–Los Angeles–London, 1979, 485 pp. | DOI | Zbl