Mots-clés : parabolic equation
@article{VYURM_2018_10_4_a3,
author = {E. I. Safonov},
title = {On determination of minor coefficient in a parabolic equation of the second order},
journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matematika, mehanika, fizika},
pages = {30--40},
year = {2018},
volume = {10},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/VYURM_2018_10_4_a3/}
}
TY - JOUR AU - E. I. Safonov TI - On determination of minor coefficient in a parabolic equation of the second order JO - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika PY - 2018 SP - 30 EP - 40 VL - 10 IS - 4 UR - http://geodesic.mathdoc.fr/item/VYURM_2018_10_4_a3/ LA - en ID - VYURM_2018_10_4_a3 ER -
%0 Journal Article %A E. I. Safonov %T On determination of minor coefficient in a parabolic equation of the second order %J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika %D 2018 %P 30-40 %V 10 %N 4 %U http://geodesic.mathdoc.fr/item/VYURM_2018_10_4_a3/ %G en %F VYURM_2018_10_4_a3
E. I. Safonov. On determination of minor coefficient in a parabolic equation of the second order. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 10 (2018) no. 4, pp. 30-40. http://geodesic.mathdoc.fr/item/VYURM_2018_10_4_a3/
[1] O.M. Alifanov, Inverse Heat Transfer Problems, Springer-Verlag, Berlin–Heidelberg, 1994, 331 pp. | DOI | Zbl
[2] S.I. Kabanikhin, Inverse and Ill-Posed Problems: theory and applications, De Gruyter, Berlin–Boston, 2012, 459 pp. | DOI | MR | Zbl
[3] G.I. Marchuk, Mathematical Models in Environmental Problems, Studies in Mathematics and its Applications, 16, Elsevier, 1986, 216 pp. | MR
[4] H.R.B. Orlande, “Inverse problems in heat transfer: New trends on solution methodologies and applications”, Journal of Heat Transfer, 134:3 (2012), 031011, 13 pp. | DOI | MR
[5] M.N. Ozisik, H.A.B. Orlando, Inverse heat transfer, Taylor Francis, New-York, 2000, 352 pp. | MR
[6] A.I. Prilepko, D.G. Orlovsky, I.A. Vasin, Methods for solving inverse problems in Mathematical Physics, Marcel Dekker, Inc., New-York, 2000, 744 pp. | DOI | MR | Zbl
[7] Prilepko A. I., Solov'ev V.V., “On the solvability of inverse boundary value problems for the determination of the coefficient preceding the lower derivative in a parabolic equation”, Differ. Uravn., 23:1 (1987), 136–143 | Zbl
[8] S.G. Pyatkov, O.V. Goncharenko, “Parameter identification and control in heat transfer processes”, Bulletin of the South Ural state university. Mathematical modelling, programming and computer software, 10:2 (2017), 51–62 | DOI | Zbl
[9] Pyatkov S. G., Samkov M. L., “On some classes of coefficient inverse problems for parabolic systems of equations”, Siberian Advances in Mathematics, 22:4 (2012), 287–302 | DOI | MR | Zbl
[10] S.G. Pyatkov, V.V. Rotko, “On some parabolic inverse problems with the pointwise overdetermination”, AIP Conference Proceedings, 1907:1 (2017), 020008 | DOI
[11] M. Dehghan, F. Shakeri, “Method of lines solutions of the parabolic inverse problem with an overspecification at a points”, Numerical Algorithms, 50:4 (2009), 417–437 | DOI | MR | Zbl
[12] M. Dehghan, “Numerical computation of a control function in a partial differential equation”, Applied mathematics and computation, 147:2 (2004), 397–408 | DOI | MR | Zbl
[13] M. Dehghan, “Determination of a control parameter in the two-dimensional diffusion equation”, Applied Numerical Mathematics, 37:4 (2001), 489–502 | DOI | MR | Zbl
[14] M. Dehghan, “Fourth-order techniques for identifying a control parameter in the parabolic equations”, International Journal of Engineering Science, 40:4 (2002), 433–447 | DOI | MR | Zbl
[15] S. Wang, “Numerical solutions to two inverse problems for identifying control parameters in 2-dimensional parabolic partial differential equations”, American Society of Mechanical Engineers, Heat Transfer Division, HTD, 194 (1992), 11–16
[16] W. Wang, B. Han, M. Yamamoto, “Inverse heat problem of determining time-dependent source parameter in reproducing kernel space”, Nonlinear Analysis: Real World Applications, 14:1 (2013), 875–887 | DOI | MR | Zbl
[17] Fu-le Li, Zi-ku Wu, Chao-rong Ye, “A finite difference solution to a two-dimensional parabolic inverse problem”, Applied Mathematical Modelling, 36:5 (2012), 2303–2313 | DOI | MR | Zbl
[18] M. Tatari, M. Dehghan, “He's variational iteration method for computing a control parameter in a semi-linear inverse parabolic equation”, Chaos, Solitons and Fractals, 33:2 (2007), 671–677 | DOI | MR | Zbl
[19] A. Mohebbi, “A numerical algorithm for determination of a control parameter in two-dimensional parabolic inverse problems”, Acta Mathematicae Applicatae Sinica. English series, 31:1 (2015), 213–224 | DOI | MR | Zbl
[20] P.N. Vabishchevich, V.I. Vasil'ev, “Numerically solving the identification problem for the lower coefficient of a parabolic equation”, Mathematical notes of NEFU, 21:4 (2014), 71–87 | Zbl
[21] H. Triebel, Interpolation Theory, Function Spaces, Differential Operators, VEB Deutscher Verlag der Wissenschaften, Berlin, 1978, 528 pp. | DOI | MR