Recovering of lower order coefficients in forward-backward parabolic equations
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 10 (2018) no. 4, pp. 23-29 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study the issue of recovering a lower order coefficient depending on spatial variables in a forward-backward parabolic equation of the second order. The overdetermination condition is an analog of the final overdetermination condition. A solution at the initial and final moments of time is given. Equations of this type often appear in mathematical physics, for example, in fluid dynamics, in transport theory, geometry, population dynamics, and some other fields. Conditions on the data are reduced to smoothness assumptions and some inequalities for the norms of the data. So it is possible to say that the obtained results are local in a certain way. Under some condition on the data, we prove that the problem is solvable. Uniqueness of the theorem is also described. The arguments rely on the generalized maximum principle and the solvability of theorems of the periodic direct problem. The results generalize the previous knowledge about the multidimensional case. The used function spaces are the Sobolev spaces.
Keywords: inverse problem, final overdetermination, forward-backward parabolic equation, solvability, periodic condition.
@article{VYURM_2018_10_4_a2,
     author = {S. G. Pyatkov and E. S. Kvich},
     title = {Recovering of lower order coefficients in forward-backward parabolic equations},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matematika, mehanika, fizika},
     pages = {23--29},
     year = {2018},
     volume = {10},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VYURM_2018_10_4_a2/}
}
TY  - JOUR
AU  - S. G. Pyatkov
AU  - E. S. Kvich
TI  - Recovering of lower order coefficients in forward-backward parabolic equations
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
PY  - 2018
SP  - 23
EP  - 29
VL  - 10
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VYURM_2018_10_4_a2/
LA  - en
ID  - VYURM_2018_10_4_a2
ER  - 
%0 Journal Article
%A S. G. Pyatkov
%A E. S. Kvich
%T Recovering of lower order coefficients in forward-backward parabolic equations
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
%D 2018
%P 23-29
%V 10
%N 4
%U http://geodesic.mathdoc.fr/item/VYURM_2018_10_4_a2/
%G en
%F VYURM_2018_10_4_a2
S. G. Pyatkov; E. S. Kvich. Recovering of lower order coefficients in forward-backward parabolic equations. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 10 (2018) no. 4, pp. 23-29. http://geodesic.mathdoc.fr/item/VYURM_2018_10_4_a2/

[1] H. Triebel, Interpolation Theory, Function Spaces, Differential Operators, North-Holland Mathematical Library, 18, North-Holland Publishing, Amsterdam, 1978 | DOI | MR | Zbl

[2] M. Ivanchov, Inverse problems for equations of parabolic type, Mathematical Studies Monograph Series, 10, WNTL Publishers, Lviv, 2003, 238 pp. | MR

[3] A.I. Kozhanov, Composite Type Equations and Inverse Problems, De Gruyter, Berlin–Boston, 1999 | MR

[4] V. Isakov, Inverse Problems for Partial Differential Equations, Appl. Math. Sci., 127, Springer, Cham–Berlin, 2006, 344 pp. | DOI | MR | Zbl

[5] A.I. Prilepko, D.G. Orlovsky, I.A. Vasin, Methods for solving inverse problems in Mathematical Physics, Marcel Dekker, Inc., New-York, 1999 | MR

[6] W. Greenberg, C.V.M. Van der Mee, P.F. Zweifel, “Generalized kinetic equations”, Integral Equations and Operator Theory, 7:1 (1984), 60–95 | DOI | MR | Zbl

[7] S.G. Pyatkov, S.V. Popov, V.I. Antipin, “On solvability of boundary value problems for kinetic operator-differential equations”, Integral Equations and Operator Theory, 80:4 (2014), 557–580 | DOI | MR | Zbl

[8] Abasheeva N. L., “The solvability of a periodic boundary-value problem for an operator-differential equation of mixed type”, Vestnik NGU. Seriya: Matematika, mekhanika, informatika, 1:2 (2001), 3–18 (in Russ.)

[9] N.L. Abasheeva, “Determination of a right-hand side term in an operator-differential equation of mixed type”, Journal of Inverse and Ill-posed Problems, 10:6 (2002), 547–560 | DOI | MR | Zbl

[10] Pyatkov S. G., “The solvability of a linear inverse problem for several classes of singular parabolic equations”, Obratnye zadachi i informatsionnye tekhnologii, 1:2 (2002), 115–123 (in Russ.)

[11] S.G. Pyatkov, Operator Theory. Nonclassical problems, VSP, Utrecht–Boston–Köln–Tokyo, 2002, 348 pp. | MR | Zbl

[12] Kaliev I. A., Mugafarov M. F., Fattahova O. V., “Inverse problem for forward-backward parabolic equation with generalized conjugation conditions”, Ufa mathematical journal, 3:2 (2011), 33–41 | MR

[13] N.L. Abasheeva, “Some inverse problems for parabolic equations with changing time direction”, Journal of Inverse and Ill-posed Problems, 12:4 (2004), 337–348 | DOI | MR | Zbl

[14] O.A. Ladyzhenskaya, V.A. Solonnikov, N.N. Ural'tseva, Linear and Quasilinear Elliptic Equations, Mathematics in Science and Engineering, 46, Academic Press, New-York, 1968, 495 pp. | MR | Zbl