@article{VYURM_2018_10_4_a1,
author = {V. V. Karachik},
title = {On representation of {Green's} function of the {Dirichlet} problem for biharmonic equation in a ball},
journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matematika, mehanika, fizika},
pages = {13--22},
year = {2018},
volume = {10},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VYURM_2018_10_4_a1/}
}
TY - JOUR AU - V. V. Karachik TI - On representation of Green's function of the Dirichlet problem for biharmonic equation in a ball JO - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika PY - 2018 SP - 13 EP - 22 VL - 10 IS - 4 UR - http://geodesic.mathdoc.fr/item/VYURM_2018_10_4_a1/ LA - ru ID - VYURM_2018_10_4_a1 ER -
%0 Journal Article %A V. V. Karachik %T On representation of Green's function of the Dirichlet problem for biharmonic equation in a ball %J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika %D 2018 %P 13-22 %V 10 %N 4 %U http://geodesic.mathdoc.fr/item/VYURM_2018_10_4_a1/ %G ru %F VYURM_2018_10_4_a1
V. V. Karachik. On representation of Green's function of the Dirichlet problem for biharmonic equation in a ball. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 10 (2018) no. 4, pp. 13-22. http://geodesic.mathdoc.fr/item/VYURM_2018_10_4_a1/
[1] Bitsadze A. V., Equations of Mathematical Physics, Nauka Publ., M., 1982, 336 pp. (in Russ.)
[2] Y. Wang, L. Ye, “Biharmonic Green function and biharmonic Neumann function in a sector”, Complex Variables and Elliptic Equations, 58:1 (2013), 7–22 | DOI | MR | Zbl
[3] Y. Wang, “Tri-harmonic boundary value problems in a sector”, Complex Variables and Elliptic Equations, 59:5 (2014), 732–749 | DOI | MR | Zbl
[4] E. Constantin, N.H. Pavel, “Green function of the Laplacian for the Neumann problem in $\mathbb{R}_+^n$”, Libertas Mathematica, 30 (2010), 57–69 | MR | Zbl
[5] H. Begehr, T. Vaitekhovich, “Modified harmonic Robin function”, Complex Variables and Elliptic Equations, 58:4 (2013), 483–496 | DOI | MR | Zbl
[6] M.A. Sadybekov, B.T. Torebek, B.Kh. Turmetov, “On an explicit form of the Green function of the third boundary value problem for the Poisson equation in a circle”, AIP Conf. Proc., 1611 (2015), 255–260 | DOI | MR
[7] M.A. Sadybekov, B.T. Torebek, B.Kh. Turmetov, “On an explicit form of the Green function of the Robin problem for the Laplace operator in a circle”, Advances in Pure and Applied Mathematics, 6:3 (2015), 163–172 | DOI | MR | Zbl
[8] Kal'menov T. Sh., Koshanov B. D., Nemchenko M. Yu., “Green function representation in the Dirichlet problem for polyharmonic equations in a ball”, Dokl. Math., 78:1 (2008), 528–530 | DOI | MR | Zbl
[9] Kal'menov T. Sh., Suragan D., “On a new method for constructing the Green Function of the Dirichlet problem for the polyharmonic equation”, Differ. Equ., 48:3 (2012), 441–445 | DOI | MR | Zbl
[10] Karachik V. V., Antropova N. A., “On polynomial solutions to the Dirichlet problem for a biharmonic equation in a ball”, Sibirskii Zhurnal Industrial'noi Matematiki, 15:2 (2012), 86–98 (in Russ.) | MR | Zbl
[11] Karachik V. V., “Green Function of the Dirichlet Boundary Value Problem for Polyharmonic Equation in a Ball Under Polynomial Data”, Izvestiya of Saratov University. New Series. Series Mathematics. Mechanics. Informatics, 14:4(2) (2014), 550–558 (in Russ.) | Zbl
[12] Karachik V. V., Turmetov B. Kh., Matematicheskie Trudy, 2018, no. 1, 17–34 (in Russ.) | Zbl
[13] Sadybekov M. A., Torebek B. T., Turmetov B. K., “Representation of the Green's function of the exterior Neumann problem for the Laplace operator”, Siberian Mathematical Journal, 58:1 (2017), 153–158 | DOI | MR | Zbl
[14] M.A. Sadybekov, B.T. Torebek, B.Kh. Turmetov, “Representation of Green's function of the Neumann problem for a multi-dimensional ball”, Complex Variables and Elliptic Equations, 61:1 (2016), 104–123 | DOI | MR | Zbl
[15] V.V. Karachik, “On one set of orthogonal harmonic polynomials”, Proceedings of American Mathematical Society, 126:12 (1998), 3513–3519 | DOI | MR | Zbl
[16] Bateman H., Erdelyi A., Higher transcendental functions, v. 2, McGraw-Hill, New York–London, 1953, 396 pp.
[17] Karachik V. V., “Construction of Polynomial Solutions to the Dirichlet Problem for the Polyharmonic Equation in a Ball”, Computational Mathematics and Mathematical Physics, 54:7 (2014), 1122–1143 | DOI | DOI | MR | Zbl
[18] Vladimirov V. S., Equations of mathematical physics, Nauka Publ., M., 1981, 512 pp. (in Russ.)
[19] Karachik V. V., “Solution of the Dirichlet problem with polynomial data for the polyharmonic equation in a ball”, Differential Equations, 51:8 (2015), 1033–1042 | DOI | DOI | MR | Zbl
[20] Karachik V. V., “On an expansion of Almansi type”, Mathematical Notes, 83 (2008), 335–344 | DOI | DOI | MR | Zbl
[21] Karachik V. V., “Construction of polynomial solutions to some boundary value problems for Poisson's equation”, Computational Mathematics and Mathematical Physics, 51:9 (2011), 1567–1587 | DOI | MR | Zbl
[22] Karachik V. V., “A Neumann-type problem for the biharmonic equation”, Siberian Advances in Mathematics, 27:2 (2017), 103–118 | DOI | MR