On representation of Green's function of the Dirichlet problem for biharmonic equation in a ball
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 10 (2018) no. 4, pp. 13-22 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Elementary solution of a biharmonic equation is introduced in analogy to the known elementary solution of the Laplace equation. Relation of this elementary solution with the elementary solution of the Laplace equation gets determined. Depending on dimensionality of space in which a boundary problem is being under research, a symmetric function of two variables gets determined in explicit form through the introduced elementary solution. Then it gets proved that this function possesses properties of Green's function of the Dirichlet problem for biharmonic equation in a unit ball. Two cases when space dimensionality equals two and when space dimensionality is more than two are being researched separately. Analogous to Green's function of the Dirichlet problem for Poisson's equation in a ball, there is expansion of Green's function of the Dirichlet problem for biharmonic equation in a ball in the full, orthogonal-at-the-unit-sphere, system of homogenous harmonic polynominals. This is to be done in case when space dimensionality is more than four. Using the obtained expansion of Green's function, integral gets calculated by a ball with the kernel out of Green's function from a homogenous harmonic polynominal multiplied by the positive degree of norm of the independent variable. The obtained results get complied with the previously known results in this sphere.
Keywords: Dirichlet problem, biharmonic equation, Green's function.
@article{VYURM_2018_10_4_a1,
     author = {V. V. Karachik},
     title = {On representation of {Green's} function of the {Dirichlet} problem for biharmonic equation in a ball},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matematika, mehanika, fizika},
     pages = {13--22},
     year = {2018},
     volume = {10},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VYURM_2018_10_4_a1/}
}
TY  - JOUR
AU  - V. V. Karachik
TI  - On representation of Green's function of the Dirichlet problem for biharmonic equation in a ball
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
PY  - 2018
SP  - 13
EP  - 22
VL  - 10
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VYURM_2018_10_4_a1/
LA  - ru
ID  - VYURM_2018_10_4_a1
ER  - 
%0 Journal Article
%A V. V. Karachik
%T On representation of Green's function of the Dirichlet problem for biharmonic equation in a ball
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
%D 2018
%P 13-22
%V 10
%N 4
%U http://geodesic.mathdoc.fr/item/VYURM_2018_10_4_a1/
%G ru
%F VYURM_2018_10_4_a1
V. V. Karachik. On representation of Green's function of the Dirichlet problem for biharmonic equation in a ball. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 10 (2018) no. 4, pp. 13-22. http://geodesic.mathdoc.fr/item/VYURM_2018_10_4_a1/

[1] Bitsadze A. V., Equations of Mathematical Physics, Nauka Publ., M., 1982, 336 pp. (in Russ.)

[2] Y. Wang, L. Ye, “Biharmonic Green function and biharmonic Neumann function in a sector”, Complex Variables and Elliptic Equations, 58:1 (2013), 7–22 | DOI | MR | Zbl

[3] Y. Wang, “Tri-harmonic boundary value problems in a sector”, Complex Variables and Elliptic Equations, 59:5 (2014), 732–749 | DOI | MR | Zbl

[4] E. Constantin, N.H. Pavel, “Green function of the Laplacian for the Neumann problem in $\mathbb{R}_+^n$”, Libertas Mathematica, 30 (2010), 57–69 | MR | Zbl

[5] H. Begehr, T. Vaitekhovich, “Modified harmonic Robin function”, Complex Variables and Elliptic Equations, 58:4 (2013), 483–496 | DOI | MR | Zbl

[6] M.A. Sadybekov, B.T. Torebek, B.Kh. Turmetov, “On an explicit form of the Green function of the third boundary value problem for the Poisson equation in a circle”, AIP Conf. Proc., 1611 (2015), 255–260 | DOI | MR

[7] M.A. Sadybekov, B.T. Torebek, B.Kh. Turmetov, “On an explicit form of the Green function of the Robin problem for the Laplace operator in a circle”, Advances in Pure and Applied Mathematics, 6:3 (2015), 163–172 | DOI | MR | Zbl

[8] Kal'menov T. Sh., Koshanov B. D., Nemchenko M. Yu., “Green function representation in the Dirichlet problem for polyharmonic equations in a ball”, Dokl. Math., 78:1 (2008), 528–530 | DOI | MR | Zbl

[9] Kal'menov T. Sh., Suragan D., “On a new method for constructing the Green Function of the Dirichlet problem for the polyharmonic equation”, Differ. Equ., 48:3 (2012), 441–445 | DOI | MR | Zbl

[10] Karachik V. V., Antropova N. A., “On polynomial solutions to the Dirichlet problem for a biharmonic equation in a ball”, Sibirskii Zhurnal Industrial'noi Matematiki, 15:2 (2012), 86–98 (in Russ.) | MR | Zbl

[11] Karachik V. V., “Green Function of the Dirichlet Boundary Value Problem for Polyharmonic Equation in a Ball Under Polynomial Data”, Izvestiya of Saratov University. New Series. Series Mathematics. Mechanics. Informatics, 14:4(2) (2014), 550–558 (in Russ.) | Zbl

[12] Karachik V. V., Turmetov B. Kh., Matematicheskie Trudy, 2018, no. 1, 17–34 (in Russ.) | Zbl

[13] Sadybekov M. A., Torebek B. T., Turmetov B. K., “Representation of the Green's function of the exterior Neumann problem for the Laplace operator”, Siberian Mathematical Journal, 58:1 (2017), 153–158 | DOI | MR | Zbl

[14] M.A. Sadybekov, B.T. Torebek, B.Kh. Turmetov, “Representation of Green's function of the Neumann problem for a multi-dimensional ball”, Complex Variables and Elliptic Equations, 61:1 (2016), 104–123 | DOI | MR | Zbl

[15] V.V. Karachik, “On one set of orthogonal harmonic polynomials”, Proceedings of American Mathematical Society, 126:12 (1998), 3513–3519 | DOI | MR | Zbl

[16] Bateman H., Erdelyi A., Higher transcendental functions, v. 2, McGraw-Hill, New York–London, 1953, 396 pp.

[17] Karachik V. V., “Construction of Polynomial Solutions to the Dirichlet Problem for the Polyharmonic Equation in a Ball”, Computational Mathematics and Mathematical Physics, 54:7 (2014), 1122–1143 | DOI | DOI | MR | Zbl

[18] Vladimirov V. S., Equations of mathematical physics, Nauka Publ., M., 1981, 512 pp. (in Russ.)

[19] Karachik V. V., “Solution of the Dirichlet problem with polynomial data for the polyharmonic equation in a ball”, Differential Equations, 51:8 (2015), 1033–1042 | DOI | DOI | MR | Zbl

[20] Karachik V. V., “On an expansion of Almansi type”, Mathematical Notes, 83 (2008), 335–344 | DOI | DOI | MR | Zbl

[21] Karachik V. V., “Construction of polynomial solutions to some boundary value problems for Poisson's equation”, Computational Mathematics and Mathematical Physics, 51:9 (2011), 1567–1587 | DOI | MR | Zbl

[22] Karachik V. V., “A Neumann-type problem for the biharmonic equation”, Siberian Advances in Mathematics, 27:2 (2017), 103–118 | DOI | MR