Mathematical simulation of pneumatic system with a clearance between the piston and the pipe
Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 10 (2018) no. 4, pp. 5-12 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The article regards mathematical models of pneumatic system, consisting of a pipe which is closed from one end and open from the other. In the pipe, there is a piston that limits some volume of compressed gas. In order to determine parameters of the piston’s motion under the pressure of expanding gas, mathematical model of the system gets constructed using several methods: with the use of ordinary differential equations, and with the use of partial differential equations. The last method includes such equations as motion equation, continuity equation, and energy conservation equation, i.e. the equations of gas dynamics. Besides, corresponding boundary conditions get determined. At that, possible heating of the gas and probable loss of some volume of the gas through an existing clearance between the cylinder and the piston are taken into account. All equations included into the mathematical model get reduced to the dimensionless form. Methods of finite differences and characteristics are used for calculations, at which all partial derivatives in equations get replaced with finite differences in nodes of a grid. By the existing template, approximate value of each equation gets determined in each node of the grid by the space; then a transition to the next temporal layer takes place. Calculations are being performed either until the piston reaches the open end of the tube or until the piston started to slow down. After that, results obtained with the use of methods under consideration get compared by the criteria of fast operation and accuracy, and recommendations regarding advisability of using each method for construction of a mathematical model get provided.
Keywords: mathematical model, compressed gas, pneumatic system.
@article{VYURM_2018_10_4_a0,
     author = {A. V. Herreinstein and N. S. Midonocheva},
     title = {Mathematical simulation of pneumatic system with a clearance between the piston and the pipe},
     journal = {Vestnik \^U\v{z}no-Uralʹskogo gosudarstvennogo universiteta. Seri\^a, Matematika, mehanika, fizika},
     pages = {5--12},
     year = {2018},
     volume = {10},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VYURM_2018_10_4_a0/}
}
TY  - JOUR
AU  - A. V. Herreinstein
AU  - N. S. Midonocheva
TI  - Mathematical simulation of pneumatic system with a clearance between the piston and the pipe
JO  - Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
PY  - 2018
SP  - 5
EP  - 12
VL  - 10
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VYURM_2018_10_4_a0/
LA  - ru
ID  - VYURM_2018_10_4_a0
ER  - 
%0 Journal Article
%A A. V. Herreinstein
%A N. S. Midonocheva
%T Mathematical simulation of pneumatic system with a clearance between the piston and the pipe
%J Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika
%D 2018
%P 5-12
%V 10
%N 4
%U http://geodesic.mathdoc.fr/item/VYURM_2018_10_4_a0/
%G ru
%F VYURM_2018_10_4_a0
A. V. Herreinstein; N. S. Midonocheva. Mathematical simulation of pneumatic system with a clearance between the piston and the pipe. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Matematika, mehanika, fizika, Tome 10 (2018) no. 4, pp. 5-12. http://geodesic.mathdoc.fr/item/VYURM_2018_10_4_a0/

[1] Kleyman Ya.Z., Akusticheskiy zhurnal, 7:2 (1961), 262–264 (in Russ.)

[2] Kleyman Ya.Z., Prikladnaya matematika i mekhanika, 22:2 (1958), 197–205 (in Russ.) | Zbl

[3] Kleyman Ya.Z., Akusticheskiy zhurnal, 5:2 (1959), 157–165 (in Russ.)

[4] Rakhmatulin Kh.A., Prikladnaya matematika i mekhanika, 20:2 (1956), 184–195 (in Russ.)

[5] Golubyatnikov A. N., Aeromekhanika i gazovaya dinamika, 2001, no. 1, 74–81 (in Russ.)

[6] Golubyatnikov A. N., Leont'ev N. E., Aeromekhanika i gazovaya dinamika, 2001, no. 2, 27–34 (in Russ.)

[7] Kushner E. N., “Normal FORMS of Some Gas Dynamics Equations”, Civil Aviation High Technologies, 2013, no. 194, 20–23 (in Russ.)

[8] Bautin S. P., Obukhov A. G., “A single exact stationary solution of the gas dynamics equations system”, Proceedings of Higher Educational Establishments. Oil and Gas, 2013, no. 4, 81–86 (in Russ.)

[9] Rylov A. I., Doklady Akademii nauk, 454:6 (2014), 647–650 | DOI

[10] Betekhtin S. A., Vinitskiy A. M., Gorokhov M. S. et al., Gas dynamic fundamentals of internal ballistics, Oborongiz Publ., M., 1957, 384 pp. (in Russ.)

[11] Zharovtsev V. V., Komarovskiy L. V., Pogorelov E. I., Mathematical modeling and optimal design of ballistic installations, Izdatel'stvo Tomskogo universiteta Publ., Tomsk, 1989, 253 pp. (in Russ.)

[12] Corner J., Theory of Interior Ballistics of Guns, John Wiley and Sons, Inc., New York, 1950, 443 pp. | MR | Zbl

[13] Gerenshteyn A. V., Kastryulina N. S., “Mathematical model of piston motion in a pipe under the action of gas pressure”, Proc. XVII International Scientific and Practical Conference, Scientific Review of Physical, Mathematical and Technical Sciences in the 21st Century, no. 5(17), 2015, 134–138 (in Russ.)